БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101мической интеграции стран - членов СЭВ. Принята 25-й сессией Совета экономической взаимопомощи (июль 1971, Бухарест) в соответствии с решениями 23-й (специальной) сессии Совета (апрель 1969, Москва). На 25-й сессии руководители коммунистич. и рабочих партий и главы правительств стран- членов СЭВ определили осн. задачи и принципиальные направления дальнейшего углубления и совершенствования сотрудничества и развития социалистич. экономич. интеграции стран - членов, СЭВ в соответствии с совр. условиями строительства социализма и коммунизма. Реализация К. п. рассчитана на 15-20 лет, т. е. до 1985-90 (см. Интеграция социалистическая экономическая).

КОМПЛЕКСНОЕ ИСПОЛЬЗОВАНИЕ СЫРЬЯ, наиболее полное, экономически оправданное использование всех полезных компонентов, содержащихся в сырье, а также в отходах произ-ва. Почти все виды сырья минерального и органического происхождения содержат ряд ценных компонентов. Полнота их извлечения и использования зависит от потребности в них и уровня развития техники. К. и. с. повышает эффективность произ-ва, обеспечивает увеличение объёма и ассортимента продукции, снижение её себестоимости и сокращение затрат на создание сырьевых баз, предупреждает загрязнение окружающей среды производств, отходами. Подробнее см. в статьях Отходы производства, Сырьё.

КОМПЛЕКСНОЙ АВТОМАТИЗАЦИИ ИНСТИТУТ научно-исследовательский всесоюзный центральный (ЦНИИКА), разрабатывает важнейшие проблемы комплексной автоматизации производств, процессов. Осн. в 1956 в Москве; подчинён Мин-ву приборостроения, средств автоматизации и систем управления СССР. Ин-т имеет отделения в Магнитогорске, Нижнем Тагиле, Воскресенске, УстьКаменогорске, Харькове, Орле, АлмаАте, Новомосковске, Киеве, Гомеле, Житомире и Кстове. ЦНИИКА занимается разработкой автоматизированных систем управления (АСУ) для пром. предприятий энергетики, химии и металлургии; разрабатывает средства пром. телемеханики и пневмоавтоматики. Ин-т выпускает печатные издания: "Труды" (1960-68, с 1969 - под назв. "Вопросы промышленной кибернетики"). При ин-те имеется аспирантура. Награждён орденом Трудового Красного Знамени (1971).

КОМПЛЕКСНОЙ АВТОМАТИЗАЦИИ НЕФТЯНОЙ И ГАЗОВОЙ ПРОМЫШЛЕННОСТИ ИНСТИТУТ научноисследовательский и проектно-конструкторский (ВНИИКАНЕФТЕГАЗ), разрабатывает автоматизированные системы управления (АСУ), включая технические средства и математическое обеспечение, для нефт. и газовой пром-сти, а также для системы Госснаба СССР. Создан в 1960 в Москве. Подчинён Мин-ву приборостроения, средств автоматизации и систем управления СССР. Имеет отделения в Краснодаре и Октябрьском (Башк. АССР). Издаёт науч. труды: "Автоматизация технологических процессов" (с 1965); при ин-те имеется аспирантура.

КОМПЛЕКСНЫЕ КОНСТРУКЦИИ, конструкции из каменной кладки (стены, простенки, столбы), усиленные включёнными в них железобетонными элементами, работающими совместно с кладкой. К. к. применяются в случаях, когда требуется значительно увеличить несущую способность каменных конструкций, не увеличивая размеров их сечения. Особо важное значение имеет применение К. к. для усиления стен зданий, возводимых в сейсмических районах. Преимущество К. к. (по сравнению с каменными конструкциями)- более высокая прочность. Однако они более трудоёмки, чем конструкции из сборного железобетона.

Лит.: Поляков С. В., Ф а л евич Б. Н., Проектирование каменных и крупнопанельных конструкций, М., 1966; Справочник проектировщика, т. 12 - Каменные и армокаменные конструкции, М., 1968. В. А. Камейко.

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ, координационные соединения, хим. соединения, состав к-рых не укладывается в рамки представлений об образовании химических связей за счёт неспаренных электронов. Обычно более сложные К.с.образуются при взаимодействии простых хим. соединений. Так, при взаимодействии цианистых солей железа и калия образуется К. с.- ферроцианид калия: Fe(CN)2 + 4KCN = K4[Fe(CN)6]. К. с. широко распространены. Общее число уже синтезированных комплексных соединений, по-видимому, превышает число соединений, обычно относимых к простым. К. с. существуют в растворах, расплавах, в кристаллич. и газообразном состояниях. Переход вещества из одного физ. состояния в другое может приводить к изменению состава и строения К. с., к распаду одних комплексных группировок и образованию новых.

Ядро К. с. (комплекс) составляет центральный атом - комплексообразователь (в приведённом примере Fe) и координированные, т. е. связанные с ним, молекулы или ионы, называемые лигандами (в данном случае кислотный остаток CN). Лиганды составляют внутреннюю сферу комплекса. Бывают К. с., состоящие только из центрального атома и лигандов, напр, карбонилы металлов Ti(CO)7, Cr(CO)6, Fe(CO)5 и др. Если в состав комплекса входят ионы, не связанные непосредственно с центральным атомом, то их выделяют во внешнюю сферу комплекса. Внешнесферными могут быть и катионы, напр. К+ в K4[Fe(CN)6], и анионы, напр.

SО42- в [Cu(NH3)4]SO4. При записи формулы К. с. внешнесферные ионы выносятся за квадратные скобки. Комплексная группировка, несущая избыточный положительный электрич. заряд, как в [Cu(NH3)4]2+, или отрицательный, как в [Fe(CN)6]4~, наз. комплексным ионом. В растворах К. с. с внешнесферными ионами практически нацело диссоциированы по схеме, напр.:

К4[СоС14] = 2К++[СоС14[Cu(NH,)4]S04 = [Cu(NH3)4]+S042-. Комплексные ионы тоже могут диссоциировать в растворе. Напр.: [CoCl4?-:f± Со2+ + 4С1-.

Устойчивость К. с. в растворе определяется константой диссоциации К его комплексного иона:

[13-2.jpg]

(При записи константы диссоциации в квадратные скобки берут равновесные концентрации ионов). Константа диссоциации характеризует термодинамич. устойчивость комплекса, зависящую от энергии связи между центральным атомом и лигандом. Различают также кинетич. устойчивость, или инертность, комп-

лексной группировки - неспособность комплексного иона быстро обменивать внутрисферные ионы или молекулы на другие адденды. Напр., [Fe(H2O)6]3+ и [Сг(Н2О)б]3+ имеют почти одинаковые энергии связи Me - H2O (116 и 122 ккал/моль), но первый комплекс обменивает лиганды быстро, а второй (инертный) - медленно.

Число ионов или молекул, непосредственно связанных с центральным атомом, наз. его координационным числом (К. ч.). Напр., в К. с. K4[Fe(CN)6], Ti(CO)7 и [Cu(NH3)4]SO4 К. ч. центральных атомов равны, соответственно, 6, 7 и 4. К. ч. у различных комплексообразователей различны. Их значения меняются в зависимости от размеров и хим. природы центральных атомов и лигандов. В настоящее время известны К. ч. от 1 до 12, однако чаще всего приходится иметь дело с К. ч. 4 и 6.

Составные части К. с. чрезвычайно разнообразны. В качестве центральных атомов-комплексообразователей чаще всего выступают атомы переходных элементов (Ti, V, Cr, Mn, Fe, Co, Ni, Си, Zn, Zr, Nb, Mo, Fe, Ru, Rh, Pd, Ag, Cd, Hf, Та, W, Re, Os, Ir, Pt, Au, Hg, редкоземельные элементы, элементы группы актиноидов), а также нек-рые неметаллы, напр. В, Р, Si. Лигандами могут быть анионы кислот (F-, C1-, Вг-,I-, CN-, NO2- и др.) и самые разнообразные нейтральные органич. и неорганич. молекулы и радикалы, содержащие атомы О, N, P, S, Se, С.

К. с. с анионами кислот во внутренней сфере (ацидокомплексы) - наиболее типичные представители неорганич. комплексов. Самым распространённым лигандом является вода. При растворении простых солей в воде образуются аквокомплексы, напр., по схеме СоС12 + 6Н2О = [Со(Н2О)6]2+ + 2С1~. Кристаллич. аквокомплексы наз. кристаллогидратами.

При растворении солей в различных органич. и неорганич. жидкостях образуются разнообразные сольватокомплексы. Кристаллич. сольватокомплексы наз. кристаллосольватами. К ним относятся продукты присоединения аммиака-аммиакаты, напр. [Ni(NH3)6]Cb, продукты присоединения спирта - алкоголяты, эфира - эфираты и т. д. Сложные молекулы присоединяются к центральному атому через атомы кислорода (вода, спирты, эфиры и т. п.), азота (аммиак, его органич. производные - амины), фосфора (РСЬ, производные фосфина), углерода и др. Часто лиганд присоединяется к центральному атому несколькими из своих атомов. Такие лиганды наз. полидентатными. Среди сложных органич. производных встречаются лиганды, координирующиеся двумя, тремя, четырьмя, пятью, шестью и даже восемью атомами (соответственно би-, три-, тетра-, пента-, гексаи октадентатныелиганды). Полидентатные органич. лиганды могут образовать циклич. комплексы типа неэлектролитов (см. Внутрикомплексные соединения), напр.:
[13-3.jpg]

Самыми лучшими лигандами в смысле устойчивости образуемых ими К. с. являются комплектны - аминополикарбоновые кислоты, среди которых наибольшее распространение получила этилендиаминтетрауксусная кислота

(HOOCCH2)2NCH2CH2N(CH2COOH)2 (комплексен II, ЭДТА).

Неорганич. ацидолиганды обычно моно-, реже бидентатны. Напр., в соединении (NH4)2[Ce(NO3)6] каждая NO3группа присоединяется к атому церия двумя атомами кислорода и является бидентатной. К. ч. Се в этом соединении равно 12.

Между К. с. и обычными (простыми) соединениями нет определённой границы. Одни и те же вещества, в зависимости от поставленных задач исследования, часто можно рассматривать и как простые и как комплексные. Напр., в любом кристаллич. неорганическом веществе атомы, обычно относимые к комплексообразователям, обладают определённым К. ч. и, следовательно, ближайшей сферой, принципиально не отличимой от аналогичной группировки в обычном К. с.

Теория строения К. с. берёт своё начало от представлений А. Вернера (1893), к-рый ввёл важные для целого историч. периода понятия "главной" и "побочной" валентности, а также представления о координации, координационном числе, геометрии комплексной молекулы. Значительный вклад в исследование химии К. с., и в частности в установление связи между строением К. с. и реакционной способностью координированных групп, внесли советские учёные Л. А. Чу гаев, И. И. Черняев и др.

Однако классическая координационная теория оказалась бессильной объяснить причины образования К. с. нек-рых новых классов, предсказать их строение, а также установить взаимосвязь между строением и физ. свойствами К. с.

Удовлетворительное разрешение этих вопросов стало возможным лишь на базе современных квантово-механич. представлений о природе хим. связи. Подробнее см. Валентность, Квантовая химия, Молекулярных орбиталей метод, Химическая связь.

К. с. находят широкое применение для выделения и очистки платиновых металлов, золота, серебра, никеля, кобальта, меди, в процессах разделения редкоземельных элементов, щелочных металлов и в ряде других технологич. процессов. К. с. широко используются в хим. анализе для качественного обнаружения и количественного определения самых разнообразных элементов. В живых организмах различные типы К. с. представлены соединениями ионов металлов (Fe, Си, Mg, Mn, Mo, Zn, Co) с белками (т. н. металлопротеиды), а также витаминами, коферментами, транспортными и др. веществами, выполняющими специфические функции в обмене веществ. Особенно велика роль природных К. с. в процессах дыхания, фотосинтеза, окисления биологического, в ферментативном катализе.

Лит.: Современная химия координационных соединений, под ред. Дж. Льюиса и Р. Уилкинса, пер. с англ., М., 1963; Б е рсукер И. Б., Аблов А. В., Химическая связь в комплексных соединениях, Кишинев, 1962; Гринберг А. А., Введение в химию комплексных соединений, 2 изд., Л.- М., 1951; Дей К., С е лбин Д., Теоретическая неорганическая химия, пер. с англ., М.. 1971; Головн я В. А., Федоров И. А., Основные понятия химии комплексных соединений, М., 1961; Яцимирский К. Б., Термохимия комплексных соединений, М., 1951; Коттон Ф., Уилкинсон Дж., Современная неорганическая химия, пер. с англ., ч. 1 - 3, М., 1969. Б. Ф- Джуринский.

КОМПЛЕКСНЫЕ УДОБРЕНИЯ, удобрения, содержащие 2-3 основных питательных вещества (N, Р2О3, К2О) растений. В состав их можно ввести микроэлементы (В, Mn, Cu, Zn, Mo и др.). К. у. в основном высококонцентрированные (содержат повышенное кол-во питат. веществ и мало балласта), поэтому по сравнению с простыми удобрениями требуют меньше труда и средств на их внесение, хранение и перевозки. Они обладают хорошими физ. свойствами - не слёживаются, хорошо рассеваются при внесении машинами. Соотношение питат. веществ в К. у. различно, что зависит от способа производства, исходных компонентов, потребности растений. К. у. стали широко применять после 1950, особенно в США, Канаде, Англии, Нидерландах, Японии, Франции, Италии, где производство их составляет более 50% всего кол-ва удобрений. В СССР в 1971-75 выпуск высококонцентрированных и сложных К. у. намечено довести до 80% общего кол-ва удобрений. К. у. подразделяют на двойные (фосфорнокалийные, азотно-фосфорные, азотно-калийные) и тройные (азотно-фосфорнокалийные). В зависимости от способа производства они бывают сложные, сложно-смешанные и смешанные. К. у. применяют под все культуры, сложные удобрения - в первую очередь под технические (хлопчатник, сахарную свёклу и др.).

Сложные удобрения получают при хим. взаимодействии исходных компонентов - аммиака, фосфорной и азотной к-т, фосфоритов, апатитов, калийных природных солей и др. Выпускают в гранулированном виде. Наиболее распространены из них в СССР: аммофос (содержание питат. веществ 56-64%), диаммофос (71-74%), нитрофос (38%), калийная селитра (57%), нитроаммофоска (50-54% ), нитрофоска (36% ). Перспективны сложные жидкие удобрения, а также калия метафосфат, аммония полифосфат и др.

Сложно-смешанные удобрения получают смешиванием готовых удобрений с последующей обработкой их серной и азотной кислотами, аммиаком или аммиакатами. Содержание питат. веществ в них зависит от исходных компонентов - до 58%. В СССР для внесения под сахарную свёклу выпускают сложносмешанные удобрения, к-рые содержат азота, фосфора и калия соответственно 4, 16 и 8% и 3, 12 и 6%, а также более концентрированные туки - до 45% питательных веществ.

Смешанные удобрения - продукт механич. смешивания готовых удобрений (в основном суперфосфата с азотными удобрениями и хлористым калием). Во избежание потери питат. веществ соблюдают правила смешивания, напр., нельзя смешивать аммиачную селитру и др. аммиачные удобрения с термофосфатами, золой и др. щелочными удобрениями, т. к. при этом теряется азот; аммиачную селитру с мочевиной ввиду очень высокой гигроскопичности получаемой смеси. Для улучшения физич. свойств смесей в них вносят нейтрализующие добавки: известняк, доломит, цементную пыль и др. Лучшие смешанные удобрения получают при смешивании гранулированных компонентов. Соотношение питат. веществ в смешанных удобрениях зависит от потребности культуры и свойств почвы, напр, для основного удобрения под зерновые, сахарную свёклу, картофель, овощные на дерновоподзолистых, серых лесных и чернозёмных почвах соотношение азота, фосфора и калия (N : Р2О5: К2О) -1:1:1; для припосевного внесения под зерновые, овощные и технич. культуры - 1 : 1,5 : 1. Лит.: Справочная книга по химизации сельского хозяйства, под ред. В. М. Борисова, М., 1969. В. П. Грыз лов, Р. И. Синдяшкина.

КОМПЛЕКСНЫЕ ЧИСЛА, числа вида x + iу, где х и у - действит. числа, а г - т. н. мнимая единица (число, квадрат к-p