БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101азе - и как цепные, и как ионные. Примерами реакций насыщенных молекул в газовой фазе могут служить:
1) мономолекулярная реакция распада азометана: CH3N2CH3 -> С2Нб + N2;
2) бимолекулярная реакция превращения йодистого нитрозила: NOI + NOI -> 2NO + I2 и
3) тримолекулярная реакция окисления .окиси азота в двуокись азота: 2NO + О2 -> 2NO2.

Реакции, в к-рых превращение исходных веществ идёт по двум или нескольким направлениям, наз. параллельными; механизм и кинетич. закономерности реакций в разных направлениях могут быть самыми разнообразными - простыми и сложными (см. Параллельные реакции). Реакции, в к-рых превращение исходных веществ в конечные продукты происходит через несколько следующих друг за другом стадий с образованием промежуточных продуктов, наз. последовательными (см. Последовательные реакции).

На рис. 2 показаны кинетич. кривые для исходного, промежуточного и конечного веществ в последовательной реакции. Характерной особенностью этих кривых является наличие максимума у кривой промежуточного продукта и точки перегиба на кривой образования конечного продукта реакции. Однако эти особенности не могут служить однозначным признаком последовательной реакции. Известно много случаев, когда конечные продукты превращения ускоряют реакцию. Скорость таких автокаталитич. процессов вначале возрастает вследствие увеличения количества продукта, являющегося катализатором, а затем уменьшается вследствие израсходования исходных веществ (см. Автокатализ). Реакция, идущая под влиянием другой, протекающей одновременно и в том же участке пространства, наз. индуцированной, или сопряжённой (см. Сопряжённые реакции).

Кинетика цепных реакций. Реакции, в к-рых один первичный акт активации приводит к превращению большого числа молекул исходных веществ, наз. цепными. В реакции зарождения цепи образуется активная частица - свободный радикал или атом. Эта активная частица реагирует с молекулой исходного вещества, образуя молекулу продукта реакции и (вследствие неуничтожимости свободной валентности) регенерируя новую активную частицу; образовавшийся радикал в свою очередь реагирует с исходной молекулой и т. д. (неразветвлённая цепь). Энергия активации взаимодействия радикалов и атомов с молекулами не превышает 10 ккал/моль (41,86 кдж/моль), поэтому длина цепи из элементарных хим. реакций достигает тысяч и сотен тысяч звеньев. В нек-рых цепных реакциях увеличивается число свободных валентностей, что приводит к появлению новых активных центров, т. е. новых цепей. Т. о., цепь разветвляется и реакция ускоряется (становится нестационарной). Цепь обрывается в результате соединения (рекомбинации) двух радикалов, в случае реакции радикала с нек-рыми примесными частицами, соударения со стенкой сосуда. Скорость неразветвлённой цепной реакции вначале растёт, затем достигает постоянного значения и, наконец, медленно убывает. Скорость разветвлённой цепной реакции возрастает со временем, и при благоприятных условиях может произойти воспламенение реагирующей смеси. Достигнув максимального значения, скорость реакции уменьшается из-за расходования исходных веществ (подробнее см. Цепные реакции). В соответствии с этим кинетич. кривые цепных разветвлённых процессов имеют характерную S-образную форму (рис. 3). Точка перегиба на кривой отвечает максимуму скорости реакции.

Рис. 2. Изменение концентрации исходного 1, промежуточного 2 и конечного 3 веществ в последовательной реакции.

Рис. 3. Типичная кинетическая кривая цепного разветвлённого процесса. Формально аналогичный вид имеют и кривые автокаталитических реакций.

Основы теории цепных реакций разработаны и экспериментально подтверждены в исследованиях сов. учёного Н. Н. Семёнова и его школы. В СССР успешно изучаются скорость и механизм важнейших групп цепных процессов: полимеризации, крекинга, окисления. На базе цепной теории окислительных реакций разработаны новые высокоэффективные технологические процессы получения важных химических продуктов (в частности, мономеров для синтеза полимеров) путём окисления нефтяного сырья и углеводородных газов. Цепная теория процессов ингибированного окисления позволяет предотвращать окислительную порчу (старение) полимеров, смазочных масел и бензинов, пищевых продуктов и лекарственных препаратов. Ингибиторы окисления, или стабилизаторы окислит, процессов (см. Ингибиторы химические), - это важнейшие представители малотоннажных продуктов органич. синтеза.

Кинетика ионных реакций. Значительное число реакций в растворах протекает при участии ионов. Скорость ионных реакций сильно зависит от растворителей, т. к. в разных растворителях молекулы в разной степени диссоциированы на ионьт. Энергия активации реакции ионов с молекулами невелика: заряд иона снижает энергию активации. При изучении кинетики реакций в растворах учитывают влияние полярных групп, наличие большого межмолекулярного взаимодействия, влияние растворителя и т. п.

Кинетика гетерогенных каталитических реакций. Для реакций газов и жидкостей, протекающих у поверхности твёрдых тел (см. Катализ), по-видимому, имеют место те же 3 основных типа хим. превращений, к-рые были рассмотрены для гомогенных процессов, т. е. простые, радикально-цепные и ионные реакции. Различие заключается лишь в том, что в соответствующие кинетич. ур-ния входят концентрации реагирующих веществ в поверхностном адсорбционном слое (см. Адсорбция). Наблюдаются разные кинетич. зависимости, к-рые обусловлены характером адсорбции исходных веществ и продуктов реакции на поверхности. Основной суммарный кинетич. эффект катализатора заключается в снижении энергии активации реакции. Важной проблемой в области гетерогенного катализа является предвидение каталитич. действия. Представления и методы, свойственные теории гетерогенного катализа, всё больше сближаются с областью гомогенного катализа жидкофазных реакций, особенно при использовании в качестве катализаторов комплексных соединений переходных металлов. Выясняется механизм действия биол. катализаторов (ферментов), особенно с целью создания принципиально новых высокоэффективных катализаторов для хим. реакций.

Советскими и зарубежными учёными успешно разрабатываются и мн. др. актуальные проблемы К. х., напр, применение квантовой механики к анализу элементарного акта реакции; установление связей между строением веществ и кинетич. параметрами, характеризующими их реакционную способность; изучение кинетики и механизма конкретных сложных хим. реакций с применением новейших физ. экспериментальных методов и совр. вычислит, тгхники; использование кинетич. констант в инженерных расчётах в хим. и нефтехим. промышленности .

Лит.: Семенов Н. Н., О некоторых проблемах химической кинетики и реакционной способности, 2 изд., М., 1958; Кондратьев В. Н., Кинетика химических газовых реакций, М., 1958; Эмануэль Н. М., Кнорре Д. Г., Курс химической кинетики, 2 изд., М., 1969; Бен сон С., Основы химической кинетики, пер. с англ., М., 1964; Эмануэль Н. М., Химическая кинетика, в сб.: Развитие физической химии в СССР, М., 1967. Н.М.Эмануэль.

КИНЕТИЧЕСКАЯ ТЕОРИЯ ГАЗОВ, раздел теоретич. физики, исследующий статистич. методами свойства газов на основе представлений о молекулярном строении газа и определённом законе взаимодействия между его молекулами. Обычно под К. т. г. понимается теория неравновесных процессов в газах, а теория равновесных состояний относится к равновесной статистич. механике. Область применения К. т. г.- собственно газы, газовые смеси и плазма. Основы К. т. г. были заложены во 2-й пол. 19 в. в работах Л. Болъцмана.

Газ представляет собой простейшую по сравнению с жидкостью и твёрдым телом систему. Среднее расстояние между молекулами газа много больше их размеров. Т. к. силы взаимодействия между электрически нейтральными атомами или молекулами являются короткодействующими (т. е. очень быстро убывают с увеличением расстояния между частицами и на расстояниях в неск. молекулярных диаметров практически уже не сказываются), то взаимодействие молекул происходит лишь при их непосредственном сближении - при столкновениях. Время столкновения гораздо меньше времени свободного пробега - времени между двумя последовательными столкновениями молекулы. Вследствие этого большую часть времени молекулы газа движутся свободно.

В К. т. г. наблюдаемые макроскопич. эффекты (давление, диффузия, теплопроводность и т. д.) рассматриваются как средний результат действия всех молекул исследуемого газа. Для вычисления этих средних Больцман ввёл функцию распределения f(c, r, t), зависящую от скоростей с и координат г молекул газа и времени t. Произведение f(v, r, t) Д"Дг даёт среднее число молекул со скоростями, лежащими в интервале от v до v + Ди, и координатами в интервале от г до г + Дг. Функция распределения f подчиняется кинетическому уравнению Больцман а. В этом ур-нии изменение f со временем рассматривается как результат движения частиц, действия на них внеш. сил и парных столкновений между частицами. Ур-ние Больцмана применимо лишь для достаточно разреженных газов. В состоянии статистического равновесия при отсутствии внеш. сил функция распределения зависит только от скоростей молекул и наз. Максвелла распределением.

Осн. задача К. т. г.- определение (из ур-ния Больцмана) вида функции распределения f, т. к. знание f(v, r, t) позволяет рассчитать средние величины, характеризующие состояние газа и процессы в нём, - среднюю скорость частиц, коэффициенты диффузии, вязкости, теплопроводности и др. (см. Кинетика физическая). Методы решения кинетич. ур-ния Больцмана были разработаны англ, учёными С. Чепменом и Д. Энскогом. Ур-ние Больцмана в частном случае отсутствия внеш. сил описывает эволюцию системы к состоянию равновесия.

В ионизированных газах (плазме) частицы взаимодействуют друг с другом посредством кулоновских сил, медленно убывающих с расстоянием. Для таких сил нельзя говорить о парных столкновениях, т.к. друг с другом взаимодействует сразу большое число частиц. Но и в этом случае можно получить кинетич. ур-ние (оно наз. ур-нием Ландау), если учесть, что в подавляющем числе случаев обмен импульсами (количеством движения) при столкновении частиц мал. Если столкновениями вообще можно пренебречь, то существенную роль будут играть кулоновские силы, действующие на данную частицу со стороны всех остальных частиц системы (т. н. приближение самосогласованного поля). В этом случае для плазмы справедливо кинетич. уравнение Власова (см. Плазма). Наиболее последовательные и эффективные методы вывода кинетич. ур-ний на основе динамики систем из большого числа частиц были разработаны Н. Н. Боголюбовым.

Лит.: Болъцман Л., Лекции по теории газов, пер. с нем., М., 1953; Ч е п м е н С., Каулинг Т., Математическая теория неоднородных газов, пер. с англ., М., 1960; Боголюбов Н. Н., Проблемы динамической теории в статистической физике, М. -Л., 1946; Силин В. П., Введение в кинетическую теорию газов, М., 1971; Коган М. Н., Динамика разреженного газа, М., 1967; Некоторые вопросы кинетической теории газов, пер. с англ., М., 1965; Климент ов и ч Ю. Л., Статистическая теория неравновесных процессов в плазме, М., 1964; ЗоммерфельД А., Термодинамика и статистическая физика, пер. с нем., М., 1955; Кикоин И. К., Кикоин А. К., Молекулярная физика, М., 1963, гл. 1 и 2. Г. Я. Мякишев.

КИНЕТИЧЕСКАЯ ЭНЕРГИЯ, энергия механич. системы, зависящая от скоростей движения её точек. К. э. Т материальной точки измеряется половиной произведения массы т этой точки на квадрат её скорости v, т. е. Т = 1/2 тv2. К. э. механич. системы равна арифметич. сумме К. э. всех её точек: Т = 21/:. mi,v2k. Выражение К. э. системы можно ещё представить в виде Т - 1J2 Mvc2 + Тс, где М - масса всей системы, vc - скорость центра масс, Тс - К. э. системы в её движении вокруг центра масс. К. э. твёрдого тела, движущегося поступательно, вычисляется так же, как К. э. точки, имеющей массу, равную массе всего тела. Формулы для вычисления К. э. тела, вращающегося вокруг неподвижной оси, см. в ст. Вращателъное движение.

Изменение К. э. системы при её перемещении из положения (конфигурации) 1 в положение 2 происходит под действием приложенных к системе внеш. и внутр. сил и равно сумме работ Aekи Аik этих сил на данном перемещении:
[3-7.jpg]

Это равенство выражает теорему об изменении К. э., с помощью к-рой решаются многие задачи динамики.

При скоростях, близких к скорости света, К. э. материальной точки
[3-8.jpg]

где т0 - масса покоящейся точки, с - скорость света в вакууме (тос2 - энергия покоящейся точки). При малых скоростях (v << с) последнее соотношение переходит в обычную формулу 1/2 mv2. См. также Энергия, Энергии сохранения закон.

Лит. см. при ст. Динамика. С.М.Тарг.

КИНЕТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА, методы качественного и количественного хим. анализа, основанные на зависимости между скоростью реакции и концентрацией реагирующих веществ. К. м. а. можно применять для определения как сравнительно больших, так и малых количеств вещества; в последнем случае используют каталитич. реакции, в к-рых определяемое вещество может расходоваться в процессе реакции или служить её катализатором. Чувствительность К. м. а., основанных на таких реакциях, сравнима с чувствительностью активационного анализа. Напр., с помощью каталитич. реакций можно определить Мп и Со при концентрации их ионов соответственно 10-5 и 10-6 мкг/мл. Реакцию, по скорости к-рой определяют концентрацию, наз. индикаторной. Обычно применяют реакции следующих типов: окислительно-восстановительные (напр., окисление в щелочной среде Мn2+ в Мn4+ гипобромитом); реакции изотопного обмена между одноимённо заряженными ионами (напр., Се4+ - Се3+); реакции замещения во внутр. сфере комплексных соединений [напр., замещение CN- в Fe(CN) б водой]; различные гетерогенно-каталитич. реакции и др. Скорость реакций измеряют титриметрическим, газоволюметрич., фотометрич., полярографич., потенциометрич. и др. методами. При выполнении измерений необходимо тщательно термостатировать реакционные сосуды и применять реагенты высокой чистоты, т. к. скорость каталитич. реакций сильно зависит от темп-ры, присутствия посторонних веществ и др. факторов. К. м. а. используют гл. обр. для определения содержания примесей в полупроводниковых элементах, микроэлементов в биол. объектах, грунтовых водах, а также при анализе высокочистых реактивов и материалов.

Лит.: Яцимирский К. Б., Кинетические методы анализа, М., 1963. В. В .Краснощёков.

КИНЕТИЧЕСКИЙ МОМЕНТ, то же, что момент количества движения.

КИНЕТИЧЕСКОЕ УРАВНЕНИЕ БОЛЬЦМАНА, уравнение для функции распределения f(v, r, t) молекул газа по скоростям v и координатам г (в зависимости от времени f), описывающее неравновесные процессы в газах малой плотности. Функция f определяет среднее число частиц со скоростями в малом интервале от с до v + До и координатами в малом интервале от г до г + Дг (см. Кинетическая теория газов). Если функция распределения зависит только от координаты x и составляющей скорости vx, К. у. Б. имеет вид:
[3-9.jpg]

(т - масса частицы). Скорость изменения функции распределения со временем характеризуется частной производной df/dt; второй член в ур-нии, пропорциональный частной производной функции распреде