БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101КИНЕСКОП (от греч. kinesis - движение и skopeo - смотрю), приёмная телевизионная трубка, электроннолучевая трубка для воспроизведения телевизионных изображений. К. применяется для наблюдений чёрнобелых и цветных изображений непосредственно или посредством проецирования изображений на большой экран, для съёмки изображений на фото- или киноплёнку, в качестве источника света и устройства разложения изображения на элементы при передаче по методу бегущего луча (см. Камера с бегущим лучом). В К. (рис. 1 и 2) сила тока электронного луча, выходящего из электронного прожектора, изменяется (модулируется) в соответствии с изменениями амплитуды сигналов, поступающих на управляющий электрод (модулятор). Под действием ускоряющего напряжения на аноде и отклоняющей системы промодулированный луч высвечивает с переменной яркостью на электролюминесцентном экране строку за строкой, воспроизводя кадр за кадром передаваемое изображение (см. Телевизионная развёртка). Экран изготовляется из порошкообразного люминофора определённого состава или смеси люминофоров, к-рые наносятся на внутр. поверхность дна колбы К. В местах падения электронного луча на экране появляется свечение, цвет к-рого зависит от состава люминофора. Во избежание размазывания изображения движущихся объектов выбираются люминофоры с малым временем послесвечения (менее 0,1 сек). У большинства К. обращённую внутрь колбы поверхность экрана покрывают тонкой (ок. 0,5-1,0 мкм), прозрачной для электронов, алюминиевой плёнкой. Отражая свет, возникающий при бомбардировке экрана электронами луча, плёнка увеличивает его светоотдачу на 30-50%. Она служит также защитой люминофора в центральной части экрана от разрушения потоком отрицат. ионов, т. е. от образования т. н. "ионного пятна". В отсутствие алюминиевого слоя для защиты люминофора применяется т. н. ионная ловушка. Осн. типы изготавливаемых в СССР К. для непосредств. наблюдения чёрно-белых изображений (рис. 1) имеют прямоугольную форму экрана с размерами по диагонали 6, 11, 16 и 23 см (для переносных транзисторных телевизоров), 35,43,47,59, 61, 65 и 67 см. Чаще всего фокусировка луча производится посредством электростатич. систем, отклонение - магнитных. Углы отклонения луча (полный "раствор") равны 70, 90 или 110°. Близкое к белому свечение экрана достигается применением порошкообразной смеси двух люминофоров, дающих (при свечении) дополнительные цвета. Обычно используют активированный серебром сульфид цинка (синее свечение) н активиров. серебром или медью шшко-кадмиевый сульфид (жёлтое свечение). Напряжение на аноде К. равно 12-20 кв, сила тока луча - 300-500 ма. У К. с диагональю экрана до 23 см яркость свечения равна 30-40 нт, от 35 до 67 см - 50 - 150 нт.

Рис. 1. Схематическое устройство кинескопа для чёрно-белого телевидения: 1 - нить подогревателя катода; 2 - катод; 3 - управляющий электрод; 4 - ускоряющий электрод; 5 - первый анод; 6 - второй анод; 7 - проводящее покрытие (акводаг); 8 - катушки вертикального отклонения луча; 9 - катушки горизонтального отклонения луча; 10 - электронный луч; 11 - экран; 12 - вывод второго анода.

Рис. 2. Схематическое устройство цветного кинескопа с теневой маской типа 59ЛКЗЦ: 1 - экран; 2- люминофорные точки (триады); 3 - мелкоструктурная цветоделительная маска; 4 - электронный прожектор; 5 - отклоняющая система; 6 - система радиального свечения; 7 - магнит чистоты цвета; 8 - магнит смещения луча.

Действие К. для непосредств. наблюдения цветных изображений основано на свойстве глаз человека воспринимать цвета как результат смешения в определённых количеств, соотношениях трёх осн. цветов: красного, зелёного и синего. В наиболее распространённом в СССР и зарубежных странах цветном К. с теневой маской (рис. 2) экран выполнен в виде мозаики (рис. 3). Она состоит из множества (ок. 1,5 млн.) люминофорных "точек", светящихся под действием трёх электронных лучей: красным (напр., из активиров. марганцем фосфата цинка), зелёным (напр., из активиров. серебром селенида цинка) и синим (напр., из активиров. серебром сульфида цинка) цветами. "Точки" люминофоров 3 видов образуют группы, систематически повторяющиеся вдоль строк мозаики. Каждая такая группа по размерам соответствует одному элементу телевиз. изображения (см. Телевизионный сигнал). Между прожектором и экраном, на нек-ром расстоянииот последнего, размещена тонкая металлич. пластина - теневая маска, имеющая ок. 500 000 отверстий диаметром, составляющим доли мм. 3 электронных луча из 3 прожекторов одновременно проходят через к.-л. отверстие.

Рис. 3. Мозаика (триады) экрана цветного кинескопа с теневой маской: К - красные, 3- зелёные, С-синие люминофорные "точки".

Один из лучей всегда попадает на точечный люминофор, светящийся красным цветом, второй - зелёным, третий - синим. Телевиз. развёртка изображения осуществляется общей магнитной отклоняющей системой, а одновременное сведение 3 лучей в к.-л. отверстие маски - 3 дополнит, индивидуальными системами отклонения. Для исключения засветки "чужого" люминофора служит магнит чистоты цвета. Поворотом его электронный луч направляют на "свой" люминофор. Лучи модулируются соответствующими телевизионными сигналами, несущими информацию о цветности и яркости отд. элементов передаваемого изображения (см. Цветное телевидение). На цветном К. можно получать также чёрно-белое изображение. Изготавливаемые в СССР К. с теневой маской имеют прямоугольную форму алюминиров. экрана с размерами по диагонали 40 и 59 см; напряжение на аноде 20-25 кв и яркость экрана (в белом цвете) 60 нт (при суммарной силе тока лучей 450-1250 мка). Однако К. с теневой маской достаточно сложны в изготовлении и эксплуатации. В Сов. Союзе и за рубежом разрабатываются (1972) более простые и надёжные цветные К. однопрожекторной системы с линейчатым экраном и фокусирующей сеткой (т. н. хроматрон). Экран хроматрона состоит из вертикальных полосок люминофоров красного, синего и зелёного цветов свечения. Против полосок люминофоров красного и синего свечения и параллельно им натянуты проволоки фокусирующей сетки. Вследствие разности потенциалов сетки и экрана между проволоками образуются цилиндрич. электронные линзы, дополнительно фокусирующие электронный луч, к-рый направляется на полосы люминофора зелёного свечения. При поочерёдном подведении к модулирующему электроду видеосигнала, содержащего информацию о красной, зелёной и синей составляющих изображения, и одновременной коммутации отклоняющего напряжения на сетке поочерёдно получаются все осн. цвета. Ввиду инерционности зрения эти цвета сливаются в одно цветное изображение. К достоинствам хроматрона относятся: применение одного прожектора и простой магнитной отклоняющей системы, отсутствие дополнит, магнитов сведения лучей и чистоты цвета. В отличие от хроматрона, в выпускаемом в Японии цветном К., но с тремя прожекторами (т. н. тринитроне), происходит одновременная передача цветов, что позволяет получить большую яркость изображения и лучшее качество цветовоспроизведения по сравнению с трёхпрожекторным К. с теневой маской, т. к. лучше используются токи лучей.

Для получения телевиз. изображений на большом экране (площадью 3-4 м2) выпускаются проекционные К. с диаметром экрана 6, 10, 13 см и высокой яркостью его свечения (25-30 тыс. нт) при силе тока луча 100-150 мка (для 6- и 10-см экранов) и 2000 мка (для 13-см экрана).

Лит.: Телевидение, под ред. П. В. Шмакова, 3 изд., М., 1970; Ж и гарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972. В. И. Баранов.

КИНЕТИКА (от греч. kinetikos - приводящий в движение), основная часть механики, включающая динамику - учение о движении тел под действием сил, и статику - учение о равновесии тел под действием сил.

"КИНЕТИКА И КАТАЛИЗ", научный журнал, орган Сибирского отделения АН СССР. Издаётся в Москве с 1960. Выходит 6 номеров в год. В журнале публикуются оригинальные теоретические и экспериментальные работы по кинетике хим. превращений в газах, растворах и твёрдых фазах, по исследованию промежуточных активных частиц (радикалов, ионов), горению, механизму гомогенного и гетерогенного катализа, по науч. основам подбора катализаторов, практически важным каталитич. процессам, влиянию процессов переноса вещества и тепла на кинетику хим. превращений, по методике расчёта и моделирования контактных аппаратов. Печатаются также обзоры по важнейшим вопросам катализа и кинетики хим. превращений. Тираж (1972) 1650 экз.

КИНЕТИКА ФИЗИЧЕСКАЯ, теория неравновесных макроскопич. процессов, т. е. процессов, возникающих в системах, выведенных из состояния теплового (термодинамического) равновесия. К К. ф. можно отнести термодинамику неравновесных процессов, кинетическую теорию газов (в том числе плазмы), теорию процессов переноса в твёрдых телах, а также общую статистич. теорию неравновесных процессов, к-рая начала развиваться лишь в 50-е гг.

Все неравновесные процессы в адиабатически изолированных системах (системах, не обменивающихся теплом с окружающими телами) являются необратимыми процессами - происходят с увеличением энтропии; в равновесном состоянии энтропия достигает максимума.

Как и в случае равновесных состояний, в К. ф. возможны два способа описания систем: феноменологический, или термодинамический (термодинамика неравновесных процессов), и статистический.

Термодинамический метод описания неравновесных процессов При термодинамич. описании неравновесных процессов рассматривается изменение в пространстве и времени таких макроскопических параметров состояния системы, как плотность массы i-го компонента pi (r, t), плотность импульса pu (r, t), локальная темп-раТ(г, t), поток массы i-го компонента ji (r, t), плотность потока внутр. энергии q (r, t) [здесь r - координата, t - время, и- ср. массовая скорость, р - плотность массы]. В равновесном состоянии системы р, pi, Т постоянны, а потоки равны нулю.

Термодинамич. описание неравновесных процессов возможно лишь при достаточно медленном изменении параметров состояния в пространстве и во времени для состояний, близких к равновесным. Для газов это означает, что все термодинамич. параметры, характеризующие состояние системы, мало меняются на длине свободного пробега и за время, равное ср. времени свободного пробега молекул (ср. времени между двумя последоват. столкновениями молекул). Медленные процессы встречаются практически очень часто, т. к. установление равновесия происходит только после очень большого числа столкновений; к ним относятся: диффузия, теплопроводность, электропроводность и т. д. Отклонения от состояния термодинамич. равновесия характеризуются градиентами темп-ры, концентрации (рi/р) и массовой скорости (т. н. термодинамическими силами), а потоки энергии, массы i-го компонента и импульса связаны с термодинамич. силами линейными соотношениями. Коэффициенты в этих соотношениях наз. к инетическими коэффициентами.

Рассмотрим в качестве примера диффузию в бинарной смеси, т. е. процесс выравнивания концентрации компонентов в результате хаотического теплового движения молекул. Феноменологическое ур-ние, описывающее процесс диффузии, получают с помощью закона сохранения вещества и того опытного факта, что поток вещества одного из компонентов вследствие диффузии прямо пропорционален градиенту его концентрации (с обратным знаком). Коэфф. пропорциональности наз. коэффициентом диффузии. Согласно ур-нию диффузии, скорость изменения концентрации вещества со временем прямо пропорциональна дивергенции градиента концентрации с коэфф. пропорциональности, равным коэфф. диффузии.

Решение ур-ния диффузии позволяет определить время, в течение которого произойдёт выравнивание концентрации молекул в системе (напр., в сосуде с газом) за счёт диффузии (время релаксации). Время релаксации тр имеет порядок: Тр ~ L2/D, где L - линейные размеры сосуда, a D-коэфф. диффузии. Это время тем больше, чем больше размеры сосуда и чем меньше коэфф. диффузии. Коэфф. диффузии пропорц. длине свободного пробега молекул X и их ср. тепловой скорости v. Поэтому время релаксации оказывается пропорциональным: тр ~ L2/Xv = (L/X)2-X/v, где Xlv = т - ср. время свободного пробега. Очевидно, что Тр >>т при L >> X. Т. о., условие L >> X (размеры системы велики по сравнению с длиной свободного пробега молекул) является необходимым для того, чтобы процесс установления равновесного состояния можно было считать медленным.

Аналогичным образом устанавливаются ур-ния, описывающие теплопроводность, внутреннее трение, электропроводность и т. д. Коэфф. диффузии, теплопроводности и вязкости, а также уд. электропроводность в феноменология, теории должны быть определены экспериментально.

Перечисленные процессы наз. прямыми. Этим подчёркивается, что, напр., при диффузии градиент концентрации данного вещества вызывает поток этого же вещества; градиент темп-ры вызывает поток внутр. энергии, к-рая при постоянной концентрации молекул меняется только с темп-рой; электрич. ток вызывается градиентом потенциала и т. д.

Кроме прямых процессов, существуют ещё т. н. перекрёстные процессы. Примером перекрёстного процесса может служить термодиффузия - перенос вещества не вследствие градиента концентрации (это была бы обычная диффузия), а вследствие градиента темп-ры. Термодиффузия создаёт градиент концентрации, что приводит к появлению обычной диффузии. Если разность темп-р в системе поддерживается постоянной, то устанавливается стационарное состояние, при котором потоки вещества, вызванные градиентами темп-ры и концентрации, взаимно уравновешиваются. В смеси газов при этом концентрация молекул в местах повышенной темп-ры оказывается большей для молекул меньшей массы (данное явление используется для разделения изотопов).

Градиент концентрации в свою очередь создаёт поток внутренней энергии. В этом состоит процесс диффузионной теплопроводности. При наличии в теле заряженных частиц градиент темп-ры создаёт упорядоченное перемещение этих частиц - электрич. ток, наз. термоэлектрическим (см. Термоэлектрические явления).

В К. ф. важное значение имеет принцип симметрии кинетич. коэффициентов, установленный Л. Онсагером. В равновесном состоянии термодинамнч. параметры а. (давление, темп-pa и т. д.), характеризующие состояние макроскопич. системы, постоянны во времени: dai/dt = 0. Важнейшая функция состояния системы - энтропия S, зависящая от ai, в состоянии равновесия имеет максимум и, следовательно, её частные производные dS/dai = 0. При малом отклонении системы от равновесия производные dS/dat и dai/dt малы, но отличны от нуля, и между ними существуют приближённые линейные соотношения. Коэфф. пропорциональности в этих со-

отношениях и есть кинетич. коэффициенты. Если через yik обозначить коэфф., определяющий скорость изменения параметра системы at в зависимости от дS/даk, то, согласно принципу Онсагера (в отсутствие магнитного поля и вращения системы как целого), имеет место равенство yik = уki. Принцип Онсагера вытекает из свойства микроскопич. обратимости, которая выражается в инвариантности ур-ний движения частиц системы относительно замены знака времени: t -> -t (см. Онсагера теорема). Из этого принципа, в частности, следует существование связи между коэфф., определяющим выделение током тепла из-за неравномерного нагрева проводника (Томсона эффект), и коэфф., опре