БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101 атомов и молекул, там же, 1966, т. 88, в. 3. H. В. Карлов.

КВАНТОВЫЕ ПЕРЕХОДЫ, скачкообразные переходы квантовой системы (атома, молекулы, атомного ядра, твёрдого тела) из одного состояния в другое. Наиболее важными являются К. п. между стационарными состояниями, соответствующими различной энергии квантовой системы, - К. п. системы с одного уровня энергии на другой. При переходе с более высокого уровня энергии Ekна более низкий Ei система отдаёт энергию Ek - Ei, при обратном переходе - получает её (рис.). К. п.

Часть уровней квантовой системы: E1 - основной уровень (уровень с наименьшей возможной энергией), E_2, E3,E_4 - возбуждённые уровни. Стрелками показаны квантовые переходы с поглощением (направление вверх) и с отдачей энергии (направление вниз). могут быть излучательными и безызлу-чательными. При излучательных К. п. система испускает (переход Ek->Ei) или поглощает (переход Ei->Ek) квант электромагнитного излучения - фотон - энергии hv (v - частота излучения, h - Планка постоянная), удовлетворяющей фундаментальному со-отношению Ek-Ei = hv (1) (к-рое представляет собой закон сохранения энергии при таком переходе). В зависимости от разности энергий состояний системы, между к-рыми происходит К. п., испускаются или поглощаются фотоны радиоизлучения, инфракрасного, видимого, ультрафиолетового, рентгеновского излучения, -излучения. Совокупность излучательных К. п. с нижних уровней энергии на верхние образует спектр поглощения данной квантовой системы, совокупность обратных переходов - её спектр испускания (см Спектры оптические).

При безызлучательных К. п. система получает или отдаёт энергию при взаимодействии с др. системами. Напр., атомы или молекулы газа при столкновениях друг с другом или с электронами могут получать энергию (возбуждаться) или терять её.

Важнейшей характеристикой любого К. п. является вероятность перехода, определяющая, как часто происходит данный К. п. Вероятность перехода измеряют числом переходов данного типа в рассматриваемой квантовой системе за единицу времени (1 сек); поэтому она может принимать любые значения от О до °° (в отличие от вероятности единичного события, которая не может превышать 1). Вероятности переходов рассчитываются методами квантовой механики.

Ниже будут рассмотрены К. п. в атомах и молекулах (о К. п. в твёрдом теле, ядре атомном см. в этих ст.).


Излучательные квантовые переходы могут быть спонтанными ("самопроизвольными"), не зависящими от внешних воздействий на квантовую систему (спонтанное испускание фотона), и вынужденными, индуцированными - под действием внешнего электромагнитного излучения резонансной [удовлетворяющей соотношению (I)] частоты (поглощение и вынужденное испускание фотона). Поскольку спонтанное испускание возможно, квантовая система находится на возбуждённом уровне энергии Ekнекоторое конечное время, а затем скачкообразно переходит на к.-н. более низкий уровень. Средняя продолжительность kпребывания системы на возбуждённом уровне Ek наз. временем жизни на уровне. Чем меньше k, тем больше вероятность перехода системы в состояние с низшей энергией. Величина Ak = 1/k, определяющая среднее число фотонов, испускаемых одной частицей (атомом, молекулой) в 1 сек (k выражается в сек), наз. вероятностью спонтанного испускания с уровня Ek . Для простейшего случая спонтанного перехода с первого возбуждённого уровня E_2 на осн. уровень E1 величина А2 = l/2 определяет вероятность этого перехода; её можно обозначить A21. С более высоких возбуждённых уровней возможны К. п. на различные нижние уровни (рис.). Полное число А/k фотонов, испускаемых в среднем одной частицей с энергией за 1 сек, равно сумме чисел Aki фотонов, испускаемых при отдельных переходах:
[1139-2.jpg]

т. е. полная вероятность Ak спонтанного испускания с уровня Ek равна сумме вероятностей Akiотдельных спонтанных переходов Ek -> Ei ; величина Akiназ. коэффициентом Эйнштей-н а для спонтанного испускания при таком переходе. Для атома водорода Aki ~ (107 - 108) сек-1.

Для вынужденных К. п. число переходов пропорционально плотности излучения частоты =(Ek-Ei)/h, т. е. энергии фотонов частоты , находящихся в 1 см3. Вероятности поглощения и вынужденного испускания характеризуются соответственно коэфф. Эйнштейна Вikи Bki, равными числам фотонов, поглощаемых и соответственно вынужденно испускаемых в среднем одной частицей за 1 сек при плотности излучения, равной единице. Произведения Bikv и Bkiv определяют вероятности вынужденного поглощения и испускания под действием внешнего электромагнитного излучения плотности pv и, так же как Aki, выражаются в сек ~4.

Коэффициенты Aki, Bik и Bkiсвязаны между собой соотношениями (впервые полученными А. Эйнштейном и строго обоснованными в квантовой электродинамике):
[1139-3.jpg]

где gi(g_к) - кратность вырождения уровня Ei(Ek), т. е. число различных состояний системы, имеющих одну и ту же энергию Ei(соответственно Ek), с - скорость света. Для переходов между невырожденными уровнями (gi = = gk= 1) Bki= Вik, т. е. вероятности вынужденных К. п.- прямого и обратного - одинаковы. Если один из коэфф. Эйнштейна известен, то по соотношениям (3) и (4) можно определить остальные.

Вероятности излучательных переходов различны для разных К. п. и зависят от свойств уровней энергии Ei и Ek, между к-рыми происходит переход. Вероятности К. п. тем больше, чем сильнее изменяются при переходе электрич. и магнитные свойства квантовой системы, характеризуемые её электрическими и магнитными моментами. Возможность излучательиых К. п. между уровнями Ei и Ek с заданными характеристиками определяется отбора правилами. (Подробнее см. Излучение электромагнитное .)


Безызлучательные квантовые переходы также характеризуются вероятностями соответствующих переходов Сki и Сik - средними числами процессов отдачи и получения энергии Ek - Ei в 1 сек, рассчитанными на одну частицу с энергией Ek (для процесса отдачи энергии) или энергией Ek (для процесса получения энергии). Если возможны как излу-чательные, так и безызлучательные К. п., то полная вероятность перехода равна сумме вероятностей переходов обоих типов. Учёт безызлучательных К. п. играет существенную роль, когда его вероятность того же порядка или больше соответствующего К. п. с излучением. Напр., если с первого возбуждённого уровня E2 возможен спонтанный излучательный переход на осн. уровень E1 с вероятностью A21 и безызлучательный переход на тот же уровень с вероятностью C21, то полная вероятность перехода равна A21+ C21, а время жизни на уровне равно '2 = 1/(A21 + C21) вместо 2 = 1/A2 при отсутствии безызлучат. перехода. T. о., за счёт безызлучат. К. п. время жизни на уровне уменьшается. При C21>>A21 время '2 очень мало по сравнению с 2, и подавляющее большинство частиц будет терять энергию возбуждения E2 - E1 при безызлучательных процессах - будет происходить тушение спонтанного испускания.

Лит. см. при ст. Атом, Молекула, Спектры оптические. M. А. Ельяшевич.


КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ, устройства, в к-рых для точного измерения частоты колебаний или для генерирования колебаний с весьма стабильной частотой используются квантовые переходы частиц (атомов, молекул, ионов) из одного энергетич. состояния в другое. К. с. ч. позволяют измерять частоту колебаний, а следовательно, и их период, т. е. время, с наибольшей точностью по сравнению с др. стандартами частоты (см. Частоты стандарт, Время). Это привело к их внедрению в метрологию. К. с. ч. служат основой национальных эталонов частоты и времени и вторичных эталонов частоты, к-рые по классу точности и метрологич. возможностям приближаются к нац. эталону, но подлежат калибровке по нему. К. с. ч. применяются как лабораторные стандарты частоты, имеющие широкий набор выходных частот и снабжённые устройством для сравнения измеряемой частоты с частотой стандарта, а также как е-перы частоты, к-рые позволяют наблюдать выбранную спектральную линию, не внося в неё существенных искажений, И сравнивать (с высокой точностью) измеряемую частоту с частотой, фиксируемой спектральной линией. Качество К. с. ч. характеризуется их стабильностью - способностью сохранять выбранное значение частоты неизменным в течение длительного промежутка времени.

Квантовые законы накладывают весьма жёсткие ограничения на состояние атомов. Под действием внешнего электромагнитного поля определённой частоты атомы могут либо возбуждаться, т. е. скачком переходить из состояния с меньшей энергией E1 в состояние с большей энергией E2, поглощая при этом порцию (квант) энергии электромагнитного поля, равную:

hv =E2-E1 ,

либо переходить в состояние с меньшей энергией, излучая электромагнитные волны той же частоты (см. Атом, Квантовая электроника).

К. с. ч. принято разделять на два класса. В активных К. с. ч. квантовые переходы атомов и молекул непосредственно приводят к излучению электромагнитных волн, частота к-рых служит стандартом или опорной частотой. Такие приборы наз. также квантовыми генераторами. В пассивных К. с. ч. измеряемая частота колебаний внешнего генератора сравнивается с частотой колебаний, соответствующих определённому квантовому переходу выбранных атомов, т. е. с частотой спектральной линии. Первыми достигли технич. совершенства и стали доступными пассивные К. с. ч. на пучках атомов цезия (цезиевые стандарты частоты). В 1967 междунар. соглашением длительность секунды определена как 9.192.631.770,0 периодов колебаний, соответствующих определённому энергетич. переходу атомов единственного стабильного изотопа цезия 133Cs. Нуль после запятой означает, что это число не подлежит дальнейшему изменению. В цезие-вом стандарте частоты наблюдается контур спектральной линии 133Cs, соответствующей переходу между 2 выбранными уровнями энергии E1 и E2. Частота, соответствующая вевшине этой линии, фиксируется и с ней при помощи спец. устройств сравниваются измеряемые частоты.

Гл. частью К. с. ч. с пучком атомов Cs является атомнолучевая трубка, в к-рой поддерживается высокий вакуум. В одном конце трубки расположен источник пучка атомов Cs - полость, в к-рой находится небольшое кол-во жидкого Cs (рис. 1). Полость соединена с остальной трубкой узким каналом или набором параллельных каналов. Источник поддерживается при темп-ре ок. 100 0C, когда Cs находится в жидком состоянии (темп-pa плавления Cs 29,5 0C), но давление его паров ещё мало, и атомы Cs, вылетая из источника, пролетают через каналы достаточно редко, не сталкиваясь друг с другом. В результате этого в трубке формируется слабо расходящийся пучок атомов Cs.

В противоположном конце трубки расположен чрезвычайно чувствительный приёмник (детектор) атомов Cs, способный зарегистрировать ничтожные изменения в интенсивности пучка атомов.

Рис. 1. Схема атомнолучевой трубки: / -источник пучка Cs; 2 и 4-отклоняющие магниты, создающие неоднородные магнитные поля H1 и H2; 3 - объёмный резонатор, в котором возбуждаются электромагнитные волны, находящийся в постоянном и однородном магнитном поле H; 5 - раскалённая вольфрамовая проволочка; 6 - коллектор ионов Cs; 7 - измерительный прибор; 8 - область постоянного однородного магнитного поля H (ограничена пунктиром).

Детектор состоит из раскалённой вольфрамовой проволочки 5 и коллектора 6, между к-рыми включён источник напряжения (положительный полюс присоединён к проволочке, а отрицательный - к коллектору). Как только атом Cs касается раскалённой вольфрамовой проволочки, он отдаёт ей свой внешний электрон (энергия ионизации Cs равна 3,27 эв, а работа выхода электрона из вольфрама составляет 4,5 эв; см. Поверхностная ионизация). Ион Cs притягивается к коллектору. Если на раскалённый вольфрам попадает достаточно много атомов Cs, то в цепи между коллектором и вольфрамовой проволочкой возникает электрич. ток, измеряя к-рый, можно судить об интенсивности цезиевого пучка, попавшего на детектор.

По пути от источника к детектору пучок атомов Cs проходит между полюсными наконечниками двух сильных магнитов. Неоднородное магнитное поле Hi первого магнита расщепляет пучок атомов Cs на неск. пучков, в к-рых летят атомы, обладающие различными энергиями (находящиеся на разных энергетич. уровнях). Второй магнит (поле H2) направляет (фокусирует) на детектор только атомы, принадлежащие к одной паре энергетич. уровней E1 и E2, отклоняя в стороны остальные.

В промежутке между магнитами атомы пролетают через объёмный резонатор 3 - полость с проводящими стенками, - в к-ром возбуждаются (с помощью стабильного кварцевого генератора) электромагнитные колебания определённой частоты. Если под влиянием этих колебаний атом Cs с энергией E1 перейдёт в энергетич. состояние E2, то поле второго магнита отбросит его от детектора, т. к. для атома, перешедшего в состояние E2, поле второго магнита уже не будет фокусирующим и этот атом минует детектор. T. о., ток через детектор окажется уменьшенным на величину, пропорциональную числу атомов, совершивших энергетич. переходы под влиянием электромагнитного резонатора. Таким же образом будут зафиксированы переходы атомов Cs из состояния E_2 в состояние E1.

Число атомов, совершающих вынужденный переход в ед. времени под действием электромагнитного поля, максимально, если частота действующего на атом электромагнитного поля точно совпадает с резонансной частотой V0 = (E2 - E1)/n. По мере увеличения несовпадения (расстройки) этих частот число таких атомов уменьшается. Поэтому, плавно меняя частоту поля вблизи v0 и откладывая по горизонтальной оси частоту , а по вертикали изменение тока детектора, получим контур спектральной линии, соответствующий переходу E_1->E2 и обратно E_2->E1 (рис. 2, а).

Частота v0, соответствующая вершине спектральной линии, и является опорной точкой (репером) на шкале частот, а соответствующий ей период колебаний принят равным 1/9 192 631,0 сек,

Точность определения частоты, соответствующей вершине спектральной линии, как правило, составляет неск. процентов, а в лучшем случае - доли процента от ширины линии. Она тем выше, чем уже спектральная линия. Этим объясняется стремление устранить или по крайней мере ослабить все причины, приводящие к уширению используемых спектральных линий.

В цезиевых стандартах уширение спектральной линии (рис. 2, а) обусловлено временем взаимодействия атомов с электромагнитным полем резонатора: чем меньше это время, тем шире линия (см. Неопределённостей соотношение). Время взаимодействия совпадает со временем пролёта атома через резонатор. Оно пропорционально длине резонатора и обратно пропорционально скорости атомов.

Рис. 2. Форма спектральной линии в цезиевых стандартах частоты: а - с обычным резонатором; 6 - в случае П-образного резонатора; - резонансная частота, - ширина спектральной линии.

Но длина резонатора не может быть сделана очень большой (увеличивается рассеяние атомного пучка). Существенно уменьшить скорость атомов, понижая темп-ру, также невозможно, т. к. при этом падает интенсивность пучка. Увеличение размеров резонатора затруднено и тем, что он должен располагаться в весьма однородном по величине и направлению магнитном поле H. Последнее необходимо потому, что используемые энергетич. переходы в атомах Cs обусловлены изменением ориентации