БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101н, нужно преодолевать и инерцию его электромагнитного (в простейшем случае-кулоновского) поля.

T. о., вводя в рассмотрение взаимодействие между электроном и электромагнитным полем, к "неполевой", или "затравочной", массе m0 необходимо добавить "полевую" часть массы mпол = Eэл/С2. Вычисление полевой массы для точечной частицы (а именно такими приходится считать рассматриваемые в нулевом приближении "затравочные" частицы) приводит к лишённому физического смысла результату: mпол оказывается бесконечно большой. Действительно, энергия кулоновского поля частицы, имеющей заряд е и протяжённость а, равна Eкул = ke2/a (k - множитель порядка единицы, численное значение к-рого зависит от распределения заряда); переход к точечной частице (а -> О) приводит Eкул -> °° .

Бесконечное значение (расходимость) полевой массы (хотя и в несколько изменённом, "ослабленном" виде) сохраняется и при переходе от классич. теории к квантовой. Больше того, появляются и расходимости др. типов. Анализ встречающихся здесь трудностей привёл к появлению идеи т.н. перенормировок. Деление массы на полевую и неполевую возникает (как видно из предыдущего) из-за принятого метода рассмотрения: вначале вводится свободная "затравочная" частица, а затем "включается" взаимодействие. В эксперименте, конечно, нет ни "затравочной", ни полевой массы, там проявляется только общая масса частицы. В теории, что очень существенно, эти массы также выступают лишь в сумме, а не порознь. Объединение полевой и неполевой массы и использование для суммарной массы значения, получаемого не теоретически, а из опыта, наз. перенормировкой массы.

Традиционный путь построения теории в рамках метода теории возмущений таков: вначале формулируется теория свободных (не взаимодействующих) частиц, а затем вводится в рассмотрение взаимодействие между ними. Так, напр., сначала строится теория свободных электронов (или электронно-позитрон-ного поля), а затем рассматривается взаимодействие этих "математических", или "голых", электронов с электромагнитным полем. Однако реально существующие в природе "физические" электроны, в отличие от "математических", всегда взаимодействуют с фотонами (хотя бы с виртуальными), и "выключить" это взаимодействие можно только умозрительно. Важной частью идеи перенормировок является указание на необходимость построения теории, в к-рой выступали бы не математические, а фи-зич. частицы.

Любопытно, что природа в какой-то мере даёт возможность увидеть различие между частицей со "включённым" и "выключенным" электромагнитным взаимодействием. Напр., известны три пи-мезона: с положительным (+), отрицательным (-) и нулевым (°) элект-рич. зарядами. Это различные зарядовые состояния одной и той же частицы. Заряженные мезоны (+ и -) имеют большую массу, чем нейтральный (°); очевидно, здесь проявляется добавка, обусловленная полевой (электромагнитной) массой, хотя теория пока не может достаточно чётко объяснить этого явления количественно.

В К. т. п. процесс "облачения" мате-матич. частицы, т. е. её превращение в физическую, выглядит сложнее, чем в классич. электродинамике, где всё сводится к "пристёгиванию" к частице кулоновского "шлейфа". В квантовой теории физич. частица отличается от математической "шубой", гораздо более сложной по своему строению: её образуют "облака" рождаемых и вслед за тем поглощаемых частицей виртуальных квантов. Это могут быть кванты любого из полей, с к-рыми частица находится во взаимодействии (электромагнитного, электронно-позитронного, мезонного и т. д.). "Шуба" не есть нечто застывшее,- образующие её кванты непрерывно порождаются и поглощаются. "Шуба" пульсирует, т. е. несущая её частица как бы проводит часть времени в "облачённом", а часть - в "голом" состоянии. Какую именно часть - это определяется степенью интенсивности взаимодействий. Напр., мезонные взаимодействия нуклонов более чем в сто раз интенсивнее электромагнитных; это позволяет предполагать, что мезонное "одеяние" протона более чем в сто раз "плотнее" электромагнитного. Это, может быть, позволяет понять, почему квантовая теория электромагнитных процессов даже при далеко не полном учёте вакуумных эффектов блестяще согласуется с экспериментом, тогда как мезонная теория не добилась таких успехов. В квантовой электродинамике можно ограничиться рассмотрением процессов с малым числом виртуальных фотонов и виртуальных электронно-позитронных пар, что соответствует учёту небольшого числа "низших" поправок по методу теории возмущений; в мезон-ной теории это не приводит к успеху, что и создаёт трудности, к-рые будут рассмотрены в разделе IV.

Все приведённые выше рассуждения о "шубе" частиц являются, строго говоря, полуинтуитивными и не могут быть пока переведены на язык точной теории. Однако они могут быть полезными хотя бы потому, что помогают уяснить отличие математической частицы от физической и понять, что описание последней является далеко не простой задачей.


2. Поляризация вакуума. Перенормировка заряда. Электрическое (и в первую очередь кулоновское) поле заряженной частицы оказывает влияние на распределение виртуальных электронно-пози-тронных пар (и пар любых других заряженных частиц-античастиц). Реальный электрон притягивает виртуальные позитроны и отталкивает виртуальные электроны. Это должно приводить к явлениям, напоминающим поляризацию среды, в к-рую вносится заряженная частица. Для описания таких явлений опять применим метод возмущений.

Поляризация электронно-позитронного вакуума (принято использовать подсказываемый приведённой аналогией термин) является чисто квантовым эффектом, вытекающим из К. т. п. Эта поляризация приводит к тому, что электрон оказывается окружённым плотным слоем позитронов из виртуальных пар, так что эффективный заряд электрона должен существенно изменяться. Возникает экранировка заряда, т. е. его эффективное уменьшение. Если рассматривать "затравочные" частицы как точечные, то экранировка оказывается полной, т. е. эффективный заряд нулевым (проблема "заряда нуль"). Для преодоления этой трудности используется идея перенормировки заряда. Здесь почти дословно повторяются приводившиеся.при обсуждении перенормировки массы аргументы. Назовём "затравочным" заряд, к-рый был бы у частицы, если бы исчезло взаимодействие с электронно-позитронным вакуумом (будем говорить только о нём, хотя, конечно, нужно учитывать и влияние виртуальных пар др. полей). Наличие такого взаимодействия приводит к появлению "поправки" к заряду. Корректно вычислять её физики не умеют, как не умеют и определять "затравочный" заряд. Но поскольку эти две части заряда ни в эксперименте, ни в теории не выступают порознь, можно обойти трудность, подставляя на место общего заряда величину, непосредственно взятую из опыта. Эта процедура наз. перенормировкой заряда. Перенормировки заряда и массы не решают проблем, возникающих в теории точечных частиц, они лишь изолируют эти проблемы на нек-ром этапе теории и (что весьма важно) дают возможность выделить конечные наблюдаемые части из бесконечных значений для нек-рых величин, характеризующих физич. частицы.


3. Некоторые наблюдаемые "вакуумные"· эффекты. Существует возможность экспериментально наблюдать влияние "вакуума" на частицы. Оказывается, что "шуба" физич. частиц зависит от того, какие внешние поля действуют на эту частицу. Иначе говоря, полевые добавки к энергии частицы зависят от её состояния. Общая полевая энергия, как уже говорилось, получается в теории точечных частиц бесконечно большой, но из этой бесконечно большой величины можно выделить конечную часть, к-рая меняется в зависимости от состояния частицы и поэтому может быть обнаружена на опыте.


Лэмбовский сдвиг уровня. В атоме водорода (и нек-рых др. лёгких атомах) имеются два состояния - 2S1/2 и 2Р1/2, энергии к-рых, согласно квантовой механике, должны совпадать. В то же время картина движения электронов в этих состояниях различна. Образно говоря, S-электрон (электрон в S-состоянии) проводит осн. часть своего времени вблизи ядра, а Р-электрон в среднем находится на большем удалении от ядра. Поэтому S-электрон в среднем находится в более сильном поле, чем Р-электрон. Это приводит к тому, что добавки к энергии за счёт взаимодействия с фотонным вакуумом у Р-электрона и у S-электрона оказываются разными, что можно пояснить наглядно. Как уже говорилось, взаимодействие с вакуумом как бы раскачивает, трясёт электрон. Вместо того чтобы двигаться по нек-рой устойчивой, напр, круговой, орбите радиуса г (примем опять этот классич. образ), электрон начинает хаотически отклоняться то в одну, то в другую сторону от этой орбиты. При отклонении в каждую сторону на rэнергия меняется по-разному. Действительно, кулонов-ская энергия электрона в поле ядра меняется по закону: Eпотенц.~1/r ; при увеличении r на r энергия изменяется на величину
[1138-49.jpg][1138-50.jpg]

, а при уменьшении r на r- на величину
[1138-51.jpg]

, т. е. абс. значение E' больше, чем E. Это приводит к тому, что "вакуумное дрожание" электрона меняет значение его потенциальной энергии. Особенно заметно это изменение там, где сама потенциальная энергия велика и быстро меняется с изменением r, т. е. вблизи ядра. T. о., для S-электронов вакуумные добавки к энергии (они наз. радиационными поправками) должны быть больше, чем для Р-электронов, что и "раздвигает" уровни их энергии, к-рые без этого совпадали бы. Величина расщепления, называемая лэмбовским сдвигом уровней (впервые он был теоретически объяснён X. Бете и обнаружен экспериментально в 1947 амер. физиками У. Лэмбом и P. Ризерфордом), согласно К. т. п., оказывается равной (если выражать её в единицах частоты ): для водорода 1057,77 Мгц, для дейтерия 1058,9 Мгц, для гелия 14046,3 Мгц (переход к энергетич. единицам - эргам - производится по формуле E = hv, где выражено в гц). Эти значения находятся в таком хорошем соответствии с данными эксперимента, что дальнейшее увеличение экспериментальной точности приведёт уже к обнаружению эффектов, обусловленных не электромагнитными взаимодействиями, а т. н. сильными взаимодействиями.

Аномальный магнитный момент. Не менее замечательна точность, с к-рой вычисляется аномальный магнитный момент электрона, также отражающий "вакуумные" (радиационные) влияния на эту частицу. Из квантовой теории электрона П. Дирака следует, что электрон должен обладать магнитным моментом
[1138-52.jpg]

Но это относится к "голому" электрону. Процесс его "облачения" меняет магнитный момент. Включив в рассмотрение взаимодействие электрона с вакуумом, нужно прежде всего заменить заряд (е0)и массу (т0) идеализированной ма-тем. частицы на физич. значения этих величин:

m0 -> тфизич., e0 -> ефизич.

Однако этим не исчерпывается учёт наблюдаемых эффектов. Магнитный момент - величина, обусловливающая взаимодействие покоящейся частицы с внешним магнитным полем. Поправки, появляющиеся в выражении для энергии такого взаимодействия, естественно интерпретировать как результат появления "вакуумных" добавок к магнитному моменту (эти добавки, впервые теоретически исследованные Ю. Швингером, и наз. аномальным магнитным моментом). Аномальный магнитный момент электрона вычислен и измерен с высокой точностью, о чём можно судить по следующим данным
[1138-53.jpg]

где - т. н. постоянная тонкой структуры, равная
[1138-54.jpg]

Здесь опять наблюдается поразительное совпадение измеренного магнитного момента электрона и его значения, полученного на основе К. т. п.

Рассеяние света на свете. Существуют и др. описываемые К. т. п. эффекты. Ограничимся рассмотрением ещё одного эффекта, к-рый предсказывается К. т. п. Известно, что для электромагнитных волн справедлив принцип суперпозиции: электромагнитные волны, накладываясь, не оказывают друг на друга никакого влияния. Этот принцип наложения волн без взаимных искажений переходит из классич. теории в квантовую, где он принимает форму утверждения об отсутствии взаимодействия между фотонами. Однако положение меняется, если учесть эффекты, обусловленные электронно-позитронным вакуумом.

Диаграмма, изображённая на рис. 9, соответствует след, процессу: в начальном состоянии имеется два фотона; один из них в точке / исчезает, породив виртуальную электронно-позитронную пару; второй фотон поглощается одной из

Рис. 9

частиц этой пары (на приведённой диаграмме - позитроном) в точке 2. Затем появляются конечные фотоны: один из них рождается в точке 3 виртуальным электроном, а другой возникает в результате аннигиляции пары в точке 4. Эта диаграмма (и бесчисленное множество других, более сложных) показывает, что благодаря виртуальным электронно-позитронным парам должно появляться взаимодействие между фотонами, т. е. принцип суперпозиции должен нарушаться. Нарушения должны проявляться в таких процессах, как рассеяние света на свете (однако эффект этот настолько мал, что его ещё не удалось наблюдать на опыте). Вне экспериментальных возможностей лежит пока и имеющий неск. большую вероятность процесс рассеяния фотонов на внешнем электростатич. поле. Но успехи квантовой электродинамики настолько велики, что не приходится сомневаться в достоверности и этих её предсказаний.

Кроме указанных эффектов, "высшие" поправки, к-рые вычисляются по методу возмущений (радиационные поправки), появляются в процессах рассеяния заряженных частиц и в нек-рых др. явлениях.


IV. Трудности и проблемы квантовой теории поля

1. Успех, нуждающийся в объяснении.

Успехи квантовой электродинамики, о к-рых говорилось выше, впечатляющи, но не вполне объяснимы. Эти успехи связаны с анализом только простейших, низших диаграмм Фейнмана, учитывающих лишь небольшое число виртуальных частиц, или - на математич. языке - низшие приближения теории возмущений. К каждой из таких диаграмм можно добавлять (рассматривая более высокие приближения) бесчисленное число всё более усложняющихся диаграмм высших порядков, включающих всё большее число внутр. линий (каждая такая внутр. линия отвечает виртуальной частице). Правда, в такие усложнённые диаграммы будет входить всё увеличивающееся число вершин, каждая же вершина вносит в выражение для амплитуды вероятности процесса множитель е, точнее e/(hc)1/2. Поскольку внутренние линии имеют два конца (две вершины), добавление каждой внутр. линии, грубо говоря, изменяет амплитуду в е2/hс~1/137 раз. Если записать амплитуду в виде суммы членов с возрастающими степенями величины = e2/hc (математически построение такой суммы, или ряда, и соответствует применению метода теории возмущений), то каждому следующему члену будет соответствовать диаграмма Фейнмана со всё большим числом внутр. линий. Каждый член ряда должен быть поэтому примерно на два порядка (в сто раз) меньше предыдущего. Поэтому, казалось бы, действительно, высшие диаграммы дают ничтожный вклад и могут быть отброшены. Однако более внимательное рассмотрение показывает, что, поскольку число таких отброшенных диаграмм бесконечно велико, оценка их вклада не проста и не очевидна. Задача усложняется ещё и тем, что се выступает в комбинации с множителем, пропорциональным логарифму энергии, так что при высоких энергиях метод возмущений оказывается неэффективным.

Если в квантовой электродинамике данная пробл