БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101ако Дж. Нейман доказал теорему о невозможности нестатистич. интерпретации К. м. при сохранении её основного положения о соответствии между наблюдаемыми (физич. величинами) и операторами.

Лит.: Классич. труды - Г е и з е н 6 е р г В., Физические принципы квантовой теории, Л.- M., 1932; Дирак П., Принципы квантовой механики, пер. с англ., M., 1960; Паули В., Общие принципы волновой механики, пер. с нем., М.- Л., 1947; Нейман И., Математические основы квантовой механики, пер. с нем., M., 1964. Учебники-Л а н д а у Л. Д., Л и ф ш и ц E. M., Квантовая механика, 2 изд., M., 1963 (Теоретическая физика, т. 3); Б л о х и Н-4 е в Д. И., Основы квантовой механики, 4 изд., M., 1963; Давыдов А. С., Квантовая механика, M., 1963; Соколов А. А., Лоскутов Ю. M., Тернов И. M., Квантовая механика, M., 1962; Б о м Д., Квантовая теория, пер. с англ., M., 1961; Фейнман Р., Лейтон Р., Сэндс M., Фейнмановские лекции по физике, пер. с англ., в. 8 и 9, M., 1966 -67; Шифф Л., Квантовая механика, пер. с англ,, 2 изд., M., 1959; Ферми Э., Квантовая механика, пер. с англ., M., 1965. Популярные книги - Б о р н M., Атомная физика, пер. с англ., 3 изд., M., 1970; Пайерлс P. E., Законы природы, пер. с англ., 2 изд., M., 1962. В. Б. Берестецкий.


КВАНТОВАЯ РАДИОФИЗИКА, то же, что и квантовая электроника.

КВАНТОВАЯ СТАТИСТИКА, раздел статистич. физики, исследующий системы MH. частиц, подчиняющихся законам квантовой механики. См. Статистическая физика.

КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. Содержание:

I. Частицы и поля в классической квантовой теории
II. Квантовая электродинамика
III. Метод возмущений в квантовой теории поля
IV. Трудности и проблемы квантовой теории поля
V. Некоторые новые методы в квантовой теории поля

Квантовая теория поля - квантовая теория систем с бесконечным числом степеней свободы (полей физических). К. т. п., возникшая как обобщение квантовой механики в связи с проблемой описания процессов порождения, поглощения и взаимных превращений элементарных частиц, нашла затем широкое применение в теории твёрдого тела, ядра атомного и др. и является теперь осн. теоретич. методом исследования квантовых систем.

I. Частицы и поля в классической и квантовой теории

1. Двойственность классической теории.
В классич. теории, формирование к-рой в основном завершилось к нач. 20 в., физич. картина мира складывается из двух элементов - частиц и полей. Частицы - маленькие комочки материи, движущиеся по законам классич. механики Ньютона. Каждая из них имеет 3 степени свободы: её положение задаётся тремя координатами, напр, х, у, z; если зависимость координат от времени известна, то это даёт исчерпывающую информацию о движении частицы. Описание полей значительно сложнее. Задать, напр., электрич. поле - значит задать его напряжённость E во всех точках пространства. T. о., для описания поля необходимо знать не 3 (как для материальной точки), а бесконечно большое число величин в каждый из моментов времени; иначе говоря, поле имеет бесконечное число степеней свободы. Естественно, что и законы динамики электромагнитного поля, установление к-рых обязано в основном исследованиям M. Фарадея и Дж. Максвелла, оказываются сложнее законов механики.

Указанное различие между полями и частицами является главным, хотя и не единственным: частицы дискретны, а поля непрерывны; электромагнитное поле (электромагнитные волны) может порождаться и поглощаться, в то время как материальным точкам классич. механики возникновение и исчезновение чуждо; наконец, электромагнитные волны могут, накладываясь, усиливать или ослаблять и даже полностью "гасить" друг друга (интерференция волн), чего, разумеется, не происходит при наложении потоков частиц. Хотя частицы и волны переплетены между собой сложной сетью взаимодействий, каждый из этих объектов выступает как носитель принципиально различных индивидуальных черт. Картине мира в классич. теории присущи отчётливые черты двойственности. Открытие квантовых явлений поставило на место этой картины другую, к-рую можно назвать двуединой.


2. Кванты электромагнитного поля. В 1900 M. Планк для объяснения закономерностей теплового излучения тел впервые ввёл в физику понятие о порции, или кванте, излучения. Энергия E такого кванта пропорциональна частоте излучаемой электромагнитной волны, E = hv, где коэфф. пропорциональности hz=6,62·10-27эрг/сек (позднее он был назван постоянной Планка). А. Эйнштейн обобщил эту идею Планка о дискретности излучения, предположив, что такая дискретность не связана с каким-то особым механизмом взаимодействия излучения с веществом, а внутренне присуща самому электромагнитному излучению. Электромагнитное излучение "состоит" из таких квантов - фотонов. Эти представления получили экспериментальное подтверждение - на их основе были объяснены закономерности фотоэффекта и Комптона эффекта.

T. о., электромагнитному излучению присущи черты дискретности, к-рые прежде приписывались лишь частицам. Подобно частице (корпускуле), фотон обладает определённой энергией, импульсом, спином и всегда существует как единое целое. Однако наряду с корпускулярными фотон обладает и волновыми свойствами, проявляющимися, напр., в явлениях дифракции света и интерференции света. Поэтому его можно было бы назвать " волно-частицей ".


3. Корпускулярно-волновой дуализм.

Двуединое, корпускулярно-волновое представление о кванте электромагнитного поля - фотоне - было распространено Л. де Бройлем на все виды материи. И электроны, и протоны, и любые др. частицы, согласно гипотезе де Брой-ля, обладают не только корпускулярными, но и волновыми свойствами. Это количественно проявляется в соотношениях де Бройля, связывающих такие "корпускулярные" величины, как энергия E и импульс p частицы, с величинами, характерными для волнового описания,- длиной волны и частотой :
[1138-40.jpg]

где n - единичный вектор, указывающий направление распространения волны (см. Волны де Бройля).

Корпускулярно-волновой дуализм (подтверждённый экспериментально) потребовал пересмотра законов движения и самих способов описания движущихся объектов. Возникла квантовая механика (или волновая механика). Важнейшей чертой этой теории является идея вероятностного описания движения микрообъектов. Величиной,описывающей состояние системы в квантовой механике (напр., электрона, движущегося в заданном поле), является амплитуда вероятности, или волновая функция (x, у, z, t). Квадрат модуля волновой функции, |(х, у, z, t)|2, определяет вероятность обнаружить частицу в момент ? в точке с координатами, х, у, z. И энергия, и импульс, и все др. "корпускулярные" величины могут быть однозначно определены, если известна (, у, z, t). При таком вероятностном описании можно говорить и о "точечности" частиц. Это находит своё отражение в т. н. локальности взаимодействия, означающей, что взаимодействие, напр., электрона с нек-рым полем определяется лишь значениями этого поля и волновой функции электрона, взятыми в одной и той же точке пространства и в один и тот же момент времени. В классич. электродинамике локальность означает, что точечный заряд испытывает воздействие поля в той точке, в к-рой он находится, и не реагирует на поле во всех остальных точках.

Являясь носителем информации о корпускулярных свойствах частицы, амплитуда вероятности (x, у, z, t) в то же время отражает и её волновые свойства. Ур-ние, определяющее (x, у, z, t), - Шрёдингера уравнение - является уравнением волнового типа (отсюда назв.- волновая механика); для (x, у, z, t) имеет место суперпозиции принцип, что и позволяет описывать интерференционные явления.

T. о., отмеченная выше двуединость находит отражение в самом способе кванто-вомеханич. описания, устраняющего резкую границу, разделявшую в классич. теории поля и частицы. Это описание продиктовано Корпускулярно-волновой природой микрообъектов, и его правильность проверена на огромном числе явлений.


4. Квантовая теория поля как обобщение квантовой механики. Квантовая механика блестяще разрешила важнейшую из проблем - проблему атома, а также дала ключ к пониманию MH. др. загадок микромира. Но в то же время самое "старое" из полей - электромагнитное поле - описывалось в этой теории классич. Максвелла уравнениями, т. е. рассматривалось по существу как классическое непрерывное поле. Квантовая механика позволяет описывать движение электронов, протонов и др. частиц, но не их порождение или уничтожение, т. е. применима лишь для описания систем с неизменным числом частиц. Наиболее интересная в электродинамике задача об испускании и поглощении электромагнитных волн заряженными частицами, что на квантовом языке соответствует порождению или уничтожению фотонов, по существу оказывается вне рамок её компетенции. При кван-товомеханич. рассмотрении, напр., атома водорода можно получить дискретный набор значений энергии электрона, момента количества движения и др. физич. величин, относящихся к различным состояниям атома, можно найти, какова вероятность обнаружить электрон на определённом расстоянии от ядра, но переходы атома из одного состояния в другое, сопровождающиеся испусканием или поглощением фотонов, описать нельзя (по крайней мере, последовательно). T. о., квантовая механика даёт лишь приближённое описание атома, справедливое в той мере, в какой можно пренебречь эффектами излучения.

Порождаться и исчезать могут не только фотоны. Одно из самых поразительных и, как выяснилось, общих свойств микромира - универсальная взаимная превращаемость частиц. Либо "самопроизвольно" (на первый взгляд), либо в процессе столкновений одни частицы исчезают и на их месте появляются другие. Так, фотон может породить пару электрон-позитрон (см. Аннигиляция и рождение пар); при столкновении протонов и нейтронов могут рождаться пи-мезоны; пи-мезон распадается на мюон и нейтрино и т. д. Для описания такого рода процессов потребовалось дальнейшее развитие квантовой теории. Однако новый круг проблем не исчерпывается описанием взаимных превращений частиц, их порождения и уничтожения. Более общая и глубокая задача заключалась в том, чтобы "проквантовать" поле, т. е. построить квантовую теорию систем с бесконечным числом степеней свободы. Потребность в этом была тем более настоятельной, что, как уже отмечалось, установление корпускулярно-волнового дуализма обнаружило волновые свойства у всех "частиц". Решение указанных проблем и является целью того обобщения квантовой механики, к-рое наз. К. т. п.

Чтобы пояснить переход от квантовой механики к К. т. п., воспользуемся наглядной (хотя далеко не полной) аналогией. Рассмотрим сначала один гармонический осциллятор - материальную точку, колеблющуюся подобно маятнику. Переход от классич. механики к квантовой при описании такого маятника выявляет ряд принципиально новых обстоятельств: допустимые значения энергии оказываются дискретными, исчезает возможность одновременного определения его координаты и импульса и т. д. Однако объектом рассмотрения по-прежнему остаётся один маятник (осциллятор), только величины, к-рые описывали его состояние в классич. теории, заменяются, согласно общим положениям квантовой механики, соответствующими операторами.

Представим, что всё пространство заполнено такого рода осцилляторами. Вместо того чтобы как-то "пронумеровать" эти осцилляторы, можно просто указывать координаты точек, в к-рых каждый из них находится,- так осуществляется переход к полю осцилляторов, число степеней свободы к-рого, очевидно, бесконечно велико.

Описание такого поля можно производить различными методами. Один из них заключается в том, чтобы проследить за каждым из осцилляторов. При этом на первый план выступают величины, наз. локальными, т. е. заданными для каждой из точек пространства (и момента времени), т. к. именно координаты "помечают" выбранный осциллятор. При переходе к квантовому описанию эти локальные классич. величины, описывающие поле, заменяются локальными операторами, Ур-ния, к-рые в классич. теории описывали динамику поля, превращаются в ур-ния для соответствующих операторов. Если осцилляторы не взаимодействуют друг с другом (или с нек-рым др. полем), то для такого поля свободных осцилляторов общая картина, несмотря на бесконечное число степеней свободы, получается относительно простой; при наличии же взаимодействий возникают усложнения.

Др. метод описания поля основан на том, что вся совокупность колебаний осцилляторов может быть представлена как набор волн, распространяющихся в рассматриваемом поле. В случае невзаимодействующих осцилляторов волны также оказываются независимыми; каждая из них является носителем энергии, импульса, может обладать определённой поляризацией. При переходе от классич. рассмотрения к квантовому, когда движение каждого осциллятора описывается вероятностными квантовыми законами, волны также приобретают вероятностный смысл. Но с каждой такой волной (согласно корпускулярно-волновому дуализму) можно сопоставить частицу, обладающую той же, что и волна, энергией и импульсом (а следовательно, и массой) и имеющую спин (классич. аналогом к-рого является момент количества движения циркулярно поляризованной волны). Эту "частицу", конечно, нельзя отождествить ни с одним из осцилляторов поля, взятым в отдельности,- она представляет собой результат процесса, захватывающего бесконечно большое число осцилляторов, и описывает некое возбуждение поля. Если осцилляторы не независимы (есть взаимодействия), то это отражается и на "волнах возбуждения" или на соответствующих им "частицах возбуждения"- они также перестают быть независимыми, могут рассеиваться друг на друге, порождаться и исчезать. Изучение поля, т. о., можно свести к рассмотрению квантованных волн (или "частиц") возбуждений. Более того, никаких др. "частиц", кроме "частиц возбуждения", при данном методе описания не возникает, т. к. каждая частица-осциллятор отдельно в нарисованную общую картину квантованного осцилля-торного поля не входит.

Рассмотренная "осцилляторная модель" поля имеет в основном иллюстративное значение (хотя, напр., она довольно полно объясняет, почему в физике твёрдого тела методы К. т. п. являются эффективным инструментом теоретич. исследования). Однако она не только отражает общие важные черты теории, но и позволяет понять возможность различных подходов к проблеме квантового описания полей.

Первый из описанных выше методов ближе к т. н. гейзенберговской картине (или представлению Гейзенберга) квантового поля. Второй - к "представлению взаимодействия", к-рое обладает преимуществом большей наглядности и поэтому, как правило, будет использоваться в дальнейшем изложении. При этом, конечно, будут рассматриваться различные физич. поля, не имеющие механич. природы, а не поле механич. осцилляторов. Так, рассматривая электромагнитное поле, было бы неправильным искать за электромагнитными волнами какие-то механич. колебания: в каждой точке пространства колеблются (т. е. изменяются во времени) напряжённости электрич. E и магнитного H полей. В гейзенберговской картине описания электромагнитного поля объектами тео-ретич. исследования являются операторы E (х) и H (х) (и др. операторы, к-рые через них выражаются), появляющиеся на месте классич. величин. Во втором из рассмотренных методов н