БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101тельно, и строгая определённость импульса частицы. Поэтому точнее сказать иначе: чем более определённым является импульс частицы, тем менее определённо её положение (координата). В этом заключается специфический для К. м. принцип неопределённости. Чтобы получить количеств, выражение этого принципа - соотношение неопределённостей, рассмотрим состояние, представляющее собой суперпозицию некоторого (точнее, бесконечно большого) числа де-бройлевских волн с близкими волновыми числами, заключёнными в малом интервале k Получающаяся в результате суперпозиции волновая функция (x) (она называется волновым пакетом) имеет такой характер: вблизи нек-рого фиксированного значения x0 все амплитуды сложатся, а вдали от x0 (|x-x0|>>) будут гасить друг друга из-за большого разнобоя в фазах. Оказывается , что практически такая волновая функция сосредоточена в области шириной x, обратно пропорциональной интервалу k, т. е. x~1/k, или .xp~h(где = hk - неопределённость импульса частицы). Это соотношение и представляет собой соотношение неопределённостей Гейзенбепга.

Математически любую функцию (x) можно представить как наложение простых периодич. волн - это известное Фурье преобразование, на основании свойств к-рого соотношение неопределённостей между x и k получается математически строго. Точное соотношение имеет вид неравенства x k>=1/2, или
[1137-21.jpg]

причём под неопределённостями p и x понимаются дисперсии, т. е. среднеквадратичные отклонения импульса и координаты от их ср. значений. Физич. интерпретация соотношения (6) заключается в том, что (в противоположность классич. механике) не существует такого состояния, в к-ром координата и импульс частицы имеют одновременно точные значения. Масштаб неопределённостей этих величин задаётся постоянной Планка h, в этом заключён важный смысл этой мировой постоянной. Если неопределённости, связанные соотношением Гейзен-берга, можно считать в данной задаче малыми и пренебречь ими, то движение частицы будет описываться законами классич. механики (как движение по определённой траектории).

Принцип неопределённости является фундаментальным принципом К. м., устанавливающим физич. содержание и структуру её математич. аппарата. Кроме этого, он играет большую эвристич. роль, т.к. многие результаты К.м. могут быть получены и поняты на основе комбинации законов классич. механики с соотношением неопределённостей. Важным примером является проблема устойчивости атома, о к-рой говорилось выше. Рассмотрим эту задачу для атома водорода. Пусть электрон движется вокруг ядра (протона) по круговой орбите радиуса со скоростью v. По закону Кулона сила притяжения электрона к ядру равна е2/r2, где е - абс. величина заряда электрона, а центростремительное ускорение равно v2/r. По второму закону Ньютона mv2/r=e2/r2, где т - масса электрона. Отсюда следует, что радиус орбиты r = e2/mv2может быть сколь угодно малым, если скорость достаточно велика. Но в К. м. должно выполняться соотношение неопределённостей. Если допустить неопределённость положения электрона в пределах радиуса его орбиты г, а неопределённость скорости - в пределах , т. е. импульса в пределах р - mv, то соотношение неопределён-костей примет вид: mvr>=h. Воспользовавшись связью между и r, определяемой законом Ньютона, получим v<=e2lh и r>=h2/mе2. Следовательно, движение электрона по орбите с радиусом, меньшим r0 = h2/m2~0,5· 10-8 см, невозможно, электрон не может упасть на ядро - атом устойчив. Величина r0 и является радиусом атома водорода ("бо-ровским радиусом"). Ему соответствует максимально возможная энергия связи атома E0 (равная полной энергии электрона в атоме, т. е. сумме кинетич. энергии mv2/2 и потенциальной энергии - е2/r0, что составляет E0 = -е2/2r0~ ~ - 13,6 эв), определяющая его минимальную энергию - энергию осн. состояния.

T. о., квантовомеханич. представления впервые дали возможность теоретически оценить размеры атома (выразив его радиус через мировые постоянные h, т, е). "Малость" атомных размеров оказалась связанной с тем, что чмала" постоянная И.

Примечательно, что совр. представления об атомах, обладающих вполне определёнными устойчивыми состояниями, оказываются ближе к представлениям древних атомистов, чем основанная на законах классич. механики. планетарная модель атома, позволяющая электрону находиться на любых расстояниях от ядра.

Строгое решение задачи о движении электрона в атоме водорода получается из квантовомеханич. ур-ния движения - ур-ния Шрёдингера (см. ниже); ре-,шение ур-ния Шрёдингера даёт волновую функцию , к-рая описывает состояние электрона, находящегося в области притяжения ядра. Но и не зная явного вида , можно утверждать, что эта волновая функция представляет собой такую суперпозицию волн де Бройля, к-рая соответствует локализации электрона в области с размером >> r0 и разбросу по импульсам ~ h/r0.

Соотношение неопределённостей позволяет также понять устойчивость молекул и оценить их размеры и минимальную энергию, объясняет существование вещества, к-рое ни при каких темп-pax не превращается при нормальном давлении в твёрдое состояние (гелий), даёт качеств, представления о структуре и размерах ядра и т. д.

Существование уровней энергии - характерное квантовое явление, присущее всем физич. системам, не вытекает непосредственно из соотношения неопределённостей. Ниже будет показано, что дискретность уровней энергии связанной системы можно объяснить на основе ур-ния Шрёдингера; отметим лишь, что возможные дискретные значения энергии (энер-гетич. уровни) Eп > E0соответствуют возбуждённым состояниям квантовомеханич. системы (см., напр., Атом).

Стационарное уравнение Шрёдингера. Волны де Бройля описывают состояние частицы только в случае свободного движения. Если на частицу действует поле сил с потенциальной энергией V (наз. также потенциалом), зависящей от координат частицы, то волновая функция частицы определяется дифференциальным ур-нием, к-рое получается путём след, обобщения гипотезы де Бройля. Для случая, когда движение частицы с заданной энергией & происходят в одном измерении (вдоль оси х), ур-ние, к-рому удовлетворяет волна де Бройля (5), может быть записано в виде:
[1138-8.jpg]

где p =(2тE)1/2 - импульс свободно движущейся частицы (массы т). Если частица с энергией E движется в потенциальном поле V(x), не зависящем от времени, то квадрат её импульса (определяе-м-ый законом сохранения энергии) равен р2 = 2т[E - V(x)]. Простейшим обобщением ур-ния (*) является поэтому ур-ние
[1138-9.jpg]

Оно наз. стационарным (не зависящим от времени) уравнением Шрёдингера и относится к основным ур-ниям К. м. Решение этого ур-ния зависит от вида сил, т. е. от вида потенциала V(x). Рассмотрим неск. типичных случаев.

1) V = const, E>V. Решением является волна де Бройля = Ceikx, где h2k2/2m = p2/2m =E-V - кинетическая энергия частицы.

Рис. 3.

2) Потенциальная стенка:

V = O при x < О, V = V1 > О при x > О. Если полная энергия частицы больше высоты стенки, т. е.E > V1, и частица движется слева направо (рис. 3), то решение ур-ния (7) в области х<0 имеет вид двух волн де Бройля - падающей и отражённой:
[1138-10.jpg]

(волна с волновым числом k = - k0 соответствует движению справа налево с тем же импульсом р0), а при x>0 - проходящей волны де Бройля:
[1138-11.jpg]

Отношения |C1/C0|2 и |C'0/0|2 определяют вероятности прохождения частицы над стенкой и отражения от неё. Наличие отражения - специфически квантовомеханич. (волновое) явление (аналогичное частичному отражению световой волны от границы раздела двух прозрачных сред): "классич." частица проходит над барьером, и лишь импульс её уменьшается до значения
[1138-12.jpg]

вели энергия частицы меньше высоты стенки, E < V (рис. 4,а), то кинетич. энергия частицы E - V в области х>0 отрицательна. В классич. механике это невозможно, и частица не заходит в такую область пространства - она отражается от потенциальной стенки. Волновое движение имеет др. характер. Отри-цат. значение k2(p2/2m = h2k2/2m<0) означает, что k - чисто мнимая величина, k = ix, где и вещественно. Поэтому волна еikxпревращается в е-kx, т. е. коле-бат. режим сменяется затухающим (x>0,

Рис. 4,

иначе получился бы лишённый физ. смысла неограниченный рост волны с увеличением х). Это явление хорошо известно в теории колебаний. Под энергетич. схемой на рис. 4,а (и рис. 4,6) изображено качеств, поведение волновой функции (x), точнее её действит. части.

3) Две области, свободные от сил, разделены прямоугольным потенциальным барьером V, и частица движется к барьеру слева с энергией E

Рис. 5,

Уровни энергии. Рассмотрим поведение частицы в поле произвольной потенциальной ямы (рис. 5). Пусть потенциал отличен от нуля в нек-рой ограниченной области, причем V < О (силы притяжения). При этом и классическое, и квантовое движения существенно различны в зависимости от того, положительна или отрицательна полная энергия E частицы. При E>0 "классич." частица проходит над ямой и удаляется от неё. Отличие квантовомеханич. движения от классического состоит в том, что происходит частичное отражение волны от ямы; при этом возможные значения энергии ничем не ограничены - энергия частицы имеет непрерывный спектр. При E < О частица оказывается "запертой" внутри ямы. В классич. механике эта ограниченность области движения абсолютна и возможна при любых значениях E<0. В К. м. ситуация существенно меняется. Волновая функция должна затухать по обе стороны от ямы, т. е. иметь вид е-x|x| . Однако решение, удовлетворяющее этому условию, существует не при всех значениях E, а только при определённых дискретных значениях. Число таких дискретных значений Eпможет быть конечным или бесконечным, но оно всегда счётно, т. е. может быть перенумеровано, и всегда имеется низшее значение E0 (лежащее выше дна потенциальной ямы); номер решения n наз. квантовым числом. В этом случае говорят, что энергия системы имеет дискретный спектр. Дискретность допустимых значений энергии системы (или соответствующих частот = En/h, где = 2- угловая частота) - типично волновое явление. Его аналогии наблюдаются в классич. физике, когда волновое движение происходит в ограниченном пространстве. Так, частоты колебаний струны или частоты электромагнитных волн в объёмном резонаторе дискретны и определяются размерами и свойствами границ области, в к-рой происходят колебания. Действительно, ур-ние Шрёдингера математически подобно соответствующим ур-ниям для струны или резонатора.

Рис. 6.

Проиллюстрируем дискретный спектр энергии на примере квантового осциллятора. На рис. 6 по оси абсцисс отложено расстояние частицы от положения равновесия. Кривая (парабола) представляет потенциальную энергию частицы. В этом случае частица при всех энергиях "заперта" внутри ямы, поэтому спектр энергии дискретен. Горизонтальные прямые изображают уровни энергии частицы. Энергия низшего уровня E0 = h/2; это наименьшее значение энергии, совместимое с соотношением неопределённостей: положение частицы на дне ямы (E = О) означало бы точное равновесие, при к-ром и x = О, и p = О, что невозможно, согласно принципу неопределённости. Следующие, более высокие уровни энергии осциллятора расположены на равных расстояниях через интервал h; формула для энергии n-го уровня:
[1138-13.jpg]

Над каждой горизонтальной прямой на рис. приведено условное изображение волновой функции данного состояния. Характерно, что число узлов волновой функции (т. е. число прохождений через О) равно квантовому числу n энер-гетич. уровня. По др. сторону ямы (за точкой пересечения уровня с кривой потенциала) волновая функция быстро затухает, в соответствии с тем, что говорилось выше.

В общем случае каждая квантовомеханич. система характеризуется своим энергетическим спектром. В зависимости от вида потенциала (точнее, от характера взаимодействия в системе) энергетич. спектр может быть либо дискретным (как у осциллятора), либо непрерывным (как у свободной частицы,- её кинетич. энергия может иметь произвольное положит, значение), либо частично дискретным, частично непрерывным (напр., уровни атома при энергиях возбуждения, меньших энергии ионизации, дискретны, а при больших энергиях - непрерывны).

Особенно важным является случай, имеющий место в атомах, молекулах, ядрах и др. системах, когда наинизшее значение энергии, соответствующее осн. состоянию системы, лежит в области дискретного спектра и, следовательно, осн. состояние отделено от первого возбуждённого состояния энергетической щелью. Благодаря этому внутр. структура системы не проявляется до тех пор, пока обмен энергией при её взаимодействиях с др. системами не превысит определённого значения - ширины энергетич. щели. Поэтому при ограниченном обмене энергией сложная система (напр., ядро или атом) ведёт себя как бесструктурная частица (материальная точка). Это имеет первостепенное значение для понимания, напр., теплового движения. Так, при энергиях теплового движения, меньших энергии возбуждения атомных уровней, электроны атомов не могут участвовать в обмене энергией и не дают вклада в теплоёмкость.

Временное уравнение Шрёдингера. До сих пор рассматривались лишь возможные квантовые состояния системы и не рассматривалась эволюция системы во времени (её динамика), определяемая зависимостью волновой функции от времени. Полное решение задач К. м. должно давать волновую функцию как функцию координат и времени t . Для одномерного движения она определяется ур-нием
[1138-14.jpg]

являющимся уравнением движения в К. м. Это ур-ние наз. временным уравнением Шрёдингера. Оно справедливо и в том случае, когда потенциальная энергия зависит от времени: V = V(x, t).

Частными решениями ур-ния (9) являются функции
[1138-15.jpg]

Здесь E - энергия частицы, а (x) удовлетворяет стационарному ур-нию Шрёдингера (7); для свободного движения (x) является волной де Бройля еikx.

Волновые функции (10) обладают тем важным свойством, что соответствующие распределения вероятностей не зависят от времени, т. к. |(x,t)|2 = = |(x)|2. Поэтому