БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101еории поля, с к-рыми встречается как релятивистская классич. механика, так и релятивистская К. м. В этой статье не будут рассматриваться вопросы релятивистской К. м., связанные с квантовой теорией поля.

Критерий применимости классической механики. Соотношение между Ньютоновой и релятивистской механикой определяется существованием фундаментальной величины - предельной скорости распространения сигналов, равной скорости света с (с~3-1010 см/сек). Если скорости тел значительно меньше скорости света (т. е. v/c <<1, так что можно считать с бесконечно большой), то применима Ньютонова механика.

Соотношение между классич. механикой и К.м. носит менее наглядный характер. Оно определяется существованием другой универсальной мировой постоянной - постоянной Планка h. Постоянная h (называемая также квантом действия) имеет размерность действия (энергии, умноженной на время) и равна h = 6,62·10-27 эрг*сек. (В теории чаще используется величина ft = h/2 - = 1,0545919·10-27 эрг-сек, к-рую также яаз. постоянной Планка.) Формально критерий применимости классич. механики заключается в следующем: если в условиях данной задачи физич. величины размерности действия значительно больше H (так что h можно считать очень малой), применима классич. механика. Более подробно этот критерий будет разъяснён при изложении физических основ К. м.

История создания квантовой механики. В начале 20 в. были обнаружены две (казалось, не связанные между собой) группы явлений, свидетельствующих о неприменимости обычной классич. механики Ньютона и классич. теории электромагнитного поля (классич. электродинамики) к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света (д у а-лизм свет а); вторая - с невозможностью объяснить на основе классич. представлений устойчивое существование атома, а также спектральные закономерности, открытые при изучении испускания света атомами. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счёте, к открытию законов К.м.

Впервые квантовые представления (в т. ч. квантовая постоянная h) были введены в физику в работе M. Планка (1900), посвящённой теории теплового излучения (см. Планка закон излучения). Существовавшая к тому времени теория теплового излучения, построенная на основе классич. электродинамики и статистической физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамическою) равновесие между излучением и веществом не может быть достигнуто, т. к. вся энергия рано или поздно должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, на основе чрезвычайно смелой гипотезы. В противоположность классич. теории излучения, рассматривающей испускание электромагнитных волн как непрерывный процесс, Планк предположил, что свет испускается определёнными порциями энергии - квантами. Величина такого кванта энергии зависит от частоты света и равна E = hv.

От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся окончательной формулировкой К. м. в двух её формах к 1927. Первая начинается с работы Эйнштейна (1905), в к-рой была дана теория фотоэффекта - явления вырывания светом электронов из вещества. В развитие идеи Планка Эйнштейн предположил, что свет не только испускается и поглощается дискретными порциями - квантами излучения, но и распространение света происходит такими квантами, т. е. что дискретность присуща самому свету - сам свет состоит из отдельных порций - световых квантов (к-рые позднее были названы фотонами). Энергия фотона E связана с частотой колебаний волны соотношением Планка E=hv. Ha основании этой гипотезы Эйнштейн объяснил закономерности фотоэффекта, которые противоречили классической (базирующейся на классич. электродинамике) теории света.

Дальнейшее доказательство корпускулярного характера света было получено в 1922 А. Комптоном, показавшим экспериментально, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона (см. Комп-тона эффект). Кинематика такого столкновения определяется законами сохранения энергии и импульса, причём фотону наряду с энергией E = hv следует приписать импульс p = h/ = hv/с, где - длина световой волны. Энергия и импульс фотона связаны соотношением E = ср, справедливым в релятивистской механике для частицы с нулевой массой.

T. о., было доказано экспериментально, что наряду с известными волновыми свойствами (проявляющимися, напр., в дифракции света) свет обладает и корпускулярными свойствами: он состоит как бы из частиц - фотонов. В этом проявляется дуализм света, его сложная кор-пускулярно-волновая природа. Дуализм содержится уже в формуле E = hv, не позволяющей выбрать к.-л. одну из двух концепций: в левой части равенства энергия E относится к частице, а в правой - частота является характеристикой волны. Возникло формальное логич. противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других - корпускулярную. По существу разрешение этого противоречия и привело к созданию физич. основ К.м.

В 1924 Л. де Бройль, пытаясь найти объяснение постулированным в 1913 H. Бором условиям квантования атомных орбит (см. ниже), выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице, независимо от её природы, следует поставить в соответствие волну, длина к-рой связана с импульсом частицы соотношением
[1137-14.jpg]

По этой гипотезе не только фотоны, но и все "обыкновенные частицы" (электроны, протоны и др.) обладают волновыми свойствами, к-рые, в частности, должны проявляться в явлении дифракции. В 1927 К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов. Позднее волновые свойства были обнаружены и у др. частиц, и справедливость формулы де Бройля была подтверждена экспериментально (см. Дифракция частиц). В 1926 Э. Шрёдингер предложил ур-ние, описывающее поведение таких "волн" во внешних силовых полях. Так возникла волновая механика. Волновое ур-ние Шрёдингера является основным ур-нием нерелятивистской К.м. В 1928 П. Дирак сформулировал релятивистское ур-ние, описывающее движение электрона во внешнем силовом поле; Дирака уравнение стало одним из основных ур-ний релятивистской К. м.

Вторая линия развития начинается с работы Эйнштейна (1907), посвящённой теории теплоёмкости твёрдых тел (она также является обобщением гипотезы Планка). Электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно нек-рому набору осцилляторов (колебат. систем). Излучение или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что излучение и поглощение электромагнитного излучс-ния веществом происходят квантами энергии hv, можно выразить так: осциллятор поля не может обладать произвольной энергией, он может иметь только определённые значения энергии - дискретные уровни энергии, расстояние между к-рыми равно hv. Эйнштейн обобщил эту идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы. Поскольку тепловое движение твёрдых тел сводится к колебаниям атомов, то и твёрдое тело динамически эквивалентно набору осцилляторов. Энергия таких осцилляторов тоже квантованна, т. е. разность соседних уровней энергии (энергий, к-рыми может обладать осциллятор) должна равняться /zv, где - частота колебаний атомов. Теория Эйнштейна, уточнённая П. Деба-ем, M. Борном и T. Карманом, сыграла выдающуюся роль в развитии теории твёрдых тел.

В 1913 H. Бор применил идею квантования энергии к теории строения атома, планетарная модель к-рого следовала из результатов опытов Э. Резерфор-да (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в к-ром сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряженные электроны. Рассмотрение такого движения на основе классич. представлений приводило к парадоксальному результату - невозможности стабильного существования атомов: согласно классич. электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрич. заряд должен излучать электромагнитные волны и, следовательно, терять энергию; радиус его орбиты должен уменьшаться, и за время порядка 10-8 сек электрон должен упасть на ядро. Это означало, что законы классич. физики неприменимы к движению электронов в атоме, т.к. атомы существуют и чрезвычайно устойчивы.

Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения электрона в электрич. поле атомного ядра, реально осуществляются лишь те, к-рые удовлетворяют определённым условиям квантования. T. е. в атоме существуют (как в осцилляторе) дискретные уровни энергии. Эти уровни подчиняются определённой закономерности, выведенной Бором на основе комбинации законов Ньютоновой механики с условиями квантования, требующими, чтобы величина действия для классич. орбиты была целым кратным постоянной Планка h. Бор постулировал, что, находясь на определённом уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн. Излучение происходит лишь при переходе электрона с одной орбиты на другую, т. е. с одного уровня энергии E_i на другой с меньшей энергией Ek; при этом рождается квант света с энергией, равной разности энергий уровней, между к-рыми осуществляется переход:

hv = Ei-Ek (2) Так возникает линейчатый спектр - основная особенность атомных спектров. Бор получил правильную формулу для частот спектральных линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирич. формул (см. Спектральные серии).

Существование уровней энергии в атомах было непосредственно подтверждено Франка-Герца опытами (1913-14). Было установлено, что электроны, бомбардирующие газ, теряют при столкновении с атомами только определённые порции энергии, равные разности энергетич. уровней атома.

T. о., H. Бор, используя квантовую постоянную h, отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классич. механики). Этот факт позднее был объяснён на основе универсальности корпус-кулярно-волнового дуализма, содержащегося в гипотезе де Бройля.

Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логич. цельности теории: с одной стороны, использовалась Ньютонова механика, с другой - привлекались чуждые ей искусств, правила квантования, к тому же противоречащие классич. электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах (даже в атоме гелия), возникновение молекулярной связи и т. д. "Полуклассическая" теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одного уровня энергии на другой. Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классич. картину движения электрона по орбите, логически стройную теорию построить невозможно. Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классич. механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в к-рую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома. В 1925 В. Гейзен-бергу удалось построить такую формальную схему, в к-рой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраич. величины - матрицы; связь матриц с наблюдаемыми величинами (энергетич. уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита M. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления ур-ния Шрёдингера была показана математич. эквивалентность волновой (основанной на ур-нии Шрёдингера) и матричной механики. В 1926 M. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).

Большую роль в создании К. м. сыграли работы Дирака, относящиеся к этому же времени. Окончательное формирование К. м. как последовательной физич. теории с ясными основами и стройным математич. аппаратом произошло после работы Гейзенберга (1927), в к-рой было сформулировано неопределённостей соотношение - важнейшее соотношение, освещающее физич. смысл ур-ний К. м., её связь с классич. механикой и другие как принципиальные вопросы, так и качеств, результаты К. м. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.

Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули) о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутр. характеристика (квантовое число) - спин. Важную роль сыграл открытый В. Паули (1925) т. н. принцип запрета (Паули принцип, см. ниже), имеющий фундамент, значение в теории атома, молекулы, ядра, твёрдого тела.

В течение короткого времени К. м. была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химич. связи, периодич. системы Д. И. Менделеева, металлич. проводимости и ферромагнетизма. Эти и MH. др. явления стали (по крайней мере качественно) понятными. Дальнейшее принца, пиальное развитие квантовой теории связано гл. обр. с релятивистской К. м. Нерелятивистская К. м. развивалась в основном в направлении охвата разнообразных конкретных задач физики атомов, молекул, твёрдых тел (металлов, полупроводников), плазмы и т. д., а также совершенствования матем. аппарата и разработки количеств, методов решения различных задач.

Вероятности и волны. Поскольку законы К. м. не обладают той степенью наглядности, к-рая свойственна законам классич. механики, целесообразно проследить линию развития идей, составляющих фундамент К. м., и только после этого сформулировать её основные положения. Выбор фактов, на основе к-рых строится теория, конечно, не единствен, поскольку К. м. описывает широчайший круг явлений и каждое из них способно дать материал для её обоснования. Будем исходить из требований простоты и возможной близости к истории.

Рассмотрим простейший опыт по распространению света (рис.1). На пути пучка света ставится прозрачная пластинка S.

Рис. 1.

Часть света проходит через пластинку, а часть отражается. Известно, что свет состоит из "частиц"- фотонов. Что же происходит с отдельным фотоном при попадании на пластинку? Если поставить опыт (напр., с пучком света крайне малой интенсивности), в к-ром можно следить за судьбой каждого фотона, то можно убедиться, что фотон при встрече с пластинкой не расщепляется на два фотона, его индивидуальность как частицы сохраняется (иначе свет менял бы свою частоту, т. е. "цветность"). Оказывается, что нек-рые фотоны проходят ск