БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101овская церковь и кельи 17-18 вв.) и Сретенский монастыри; деревянная церковь Иоакима и Анны (17- 19 вв.); церкви: Входоиерусалимская, Петропавловская и др.- кон. 18 в.; Воскресенский собор (окончен в 1817). Застройка К. с кон. 18 в. велась по регулярному плану. "Соборный дом" (18 в.), присутственные места и торг, ряды (нач. 19 в.), жилые дома 19 в. К.- бальнеологич. и грязевой курорт. Леч. средства - торфяная грязь и минеральные воды сульфатно-хлоридные магниево-кальциевого натриевого типа (с глуб. 117 м, скважина № 12), используемые для питья, с хим. составом:
[1136-2.jpg]

Кашин. Вид города.

хлоридно-сульфатные натриево-магние-вые воды (с глуб. 302-384 м, скважина № 14) и хлоридные натриево-кальцие-вые воды (с глуб. 614-640 м, скважина № 22). Вода скважин № 14 и 22 используется для ванн. Лечение больных с заболеваниями органов движения и опоры, органов пищеварения, гинекологич., пе-риферич. нервной системы. Санаторий, водогрязелечебница, поликлиника.



1138.htm
КВАДРАТИЧНАЯ ФОРМА, форма 2-й степени от п переменных x1, x2,..., xn, т. е. многочлен от этих переменных, каждый член к-рого содержит либо квадрат одного из переменных, либо произведение двух различных переменных. Общий вид К. ф. при п = 2:

ах12+bx22+ сх1х2, при п = 3:

ах12 + bx22 + cx32 + dx1x2 + ex1x3 + fx2x3,

где a, b, ...,f -к.-л. числа. Произвольная К. ф. записывается так:
[1137-1.jpg]

причем считают, что аij = aji. К. ф. от 2, 3 и 4 переменных непосредственно связаны с теорией линий (на плоскости) и поверхностей (в пространстве) 2-го порядка: в декартовых координатах уравнение линии и поверхности 2-го порядка, отнесённых к центру, имеет вид A(x) =1, т. е. его левая часть является К. ф.; в однородных координатах левая часть любого ур-ния линии и поверхности 2-го порядка является К. ф. При замене переменных x1, x2, ..., хnдр. переменными y1, y2, ..., y_п, являющимися линейными комбинациями старых переменных, К. ф. переходит в другую К. ф. Путём соответствующего выбора новых переменных (невырожденного линейного преобразования) можно привести К. ф. к виду суммы квадратов переменных, умноженных на нек-рые числа. При этом ни число квадратов (ранг К. ф.), ни разность между числом положительных и числом отрицательных коэффициентов при квадратах (сигнатура К. ф.) не зависят от способа приведения К. ф. к сумме квадратов (закон и н е р-ц и и). Указанное приведение можно осуществить даже специальными (т. н. ортогональными) преобразованиями. Геометрически в этом случае такое преобразование соответствует приведению линии или поверхности 2-го порядка к главным осям.

При рассмотрении комплексных переменных изучаются К. ф. вида
[1137-2.jpg]

где xj - число, комплексно сопряжённое с xj. Если, кроме того, такая К. ф. принимает только действительные значения (это будет, когда aij = aji), то её наз. эрмитовой. Для эрмитовых форм справедливы основные факты, относящиеся к действительным К. ф.: возможность приведения к сумме квадратов, инвариантность ранга, закон инерции.

Лит.: Мальцев А. И., Основы линейной алгебры, 3 изд., M., 1970.


КВАДРАТИЧНОЕ ОТКЛОНЕНИЕ,квадратичное уклонение, стандартное отклонение величин x1, x2, ..., хnот а - квадратный корень из выражения
[1137-3.jpg]

Наименьшее значение К. о. имеет при а= х, где х - среднее арифметическое величин x1, x2, .., xn.
[1137-4.jpg]

В этом случае К. о. может служить мерой рассеяния системы величин x1, x2, .., xn.. Употребляют также более общее понятие взвешенного К. о.
[1137-5.jpg]

числа p1 , .. ., рп называют при этом весами, соответствующими величинам x1, x2, .., xn. Взвешенное К. о. достигает наименьшего значения при а, равном взвешенному среднему:

(p1x1 +···+ pnxn)/(p1 +···+pn).

В теории вероятностей К. о. xслучайной величины X (от её математич. ожидания) называют квадратный корень из дисперсии
[1137-6.jpg]

К. о. употребляют как меру качества статистич. оценок и наз. в этом случае квадратичной ошибкой. См. Ошибок теория.


КВАДРАТИЧНОЕ СРЕДНЕЕ, число (S), равное корню квадратному из среднего арифметического квадратов данных чисел a1, а2, ..., а„:
[1137-7.jpg]

КВАДРАТИЧНЫЙ ВЫЧЕТ, понятие теории чисел. К. в. о модулю т- число а, для которого сравнение х2= = a(mod т) имеет решение: при нек-ром целом x число х2 - а делится на т; если это сравнение не имеет решений, то а наз. квадратичным невычетом. Напр., если m = 11, то число 3 будет К. в., так как сравнение х2 = 3 (mod H) имеет решения х = 5, х = 6, а число 2 будет невычетом, т. к. не существует чисел х, удовлетворяющих сравнению х2= 2 (mod H). К. в. являются частным случаем вычетов степени n для n = 2. Если т равно простому нечётному числу р, то среди чисел 1, 2, ..., p- 1 имеется (р - 1)/2 К. в. и (р - 1)/2 квадратичных невычетов. Для изучения К. в. по простому модулю р вводится Лежандра символ (a/p), определяемый так: если а взаимно просто с р, то полагают (a/p) = 1, когда а- К. в., и (a/p)= -1, когда а- квадратичный невычет. Основной теоремой в этом круге вопросов является т. н. закон взаимности К. в.: если р и q - простые нечётные числа, то
[1137-8.jpg]

Эту закономерность открыл ок. 1772 Л. Эйлер, совр. формулировка дана А. Ле-жандром, полное доказательство впервые дал в 1801 К. Гаусс. Удобным обобщением символа Лежандра является Якоби символ. Закон взаимности К. в. получил многочисленные обобщения в теории алгебр, чисел. И. M. Виноградовым и др. учёными изучалось распределение К. в. и суммы значений символа Лежандра.

Лит.: Виноградов И. M., Основы теории чисел, 8 изд., M., 1972.


КВАДРАТНО - ГНЕЗДОВОЙ ПОСЕВ, способ посева с.-х. культур, при к-ром семена размещают по неск. штук в углах квадрата (прямоугольника). При К.-г. п. растения на поле размещаются равномернее и лучше используют почв, и воз д. питание и солнечный свет; сокращается расход семян; создаются условия для механизированной обработки междурядий в продольном и поперечном направлениях, позволяющей поддерживать почву рыхлой и чистой от сорняков; значительно снижаются затраты ручного труда. К.-г. п. применяют для посева кукурузы, подсолнечника, хлопчатника, клещевины, нек-рых овощных и др. культур. В СССР К.-г. п. впервые начал применяться в 1932-35 для кукурузы (в УССР). Расстояние между гнёздами и кол-во семян в гнезде устанавливают в зависимости от биол. особенностей культуры, почв. условий и запасов влаги в почве. Напр., в большинстве р-нов возделывания кукурузы на зерне и подсолнечника на семена лучшие результаты получают при расстоянии между гнёздами 70 X 70 см и 2 растениях в гнезде. Для К.-г. п. сельскохозяйственных культур используют навесные СКНК-4, СКНК-6, СКНК-8, СТХ-4А, СТХ-4Б и др. квадратно-гнездовые сеялки. Для точного высева нужного числа растений в гнезде семена калибруют и учитывают их полевую всхожесть. См. Посев. С. А. Воробьёв.

КВАДРАТНОЕ ПИСЬМО (др.-евр.- ке-таб мерубба), ответвление западносемит-ского письма, восходит к арамейскому (с 3 в. до н. э.), в основном сформировалось к 2-1 вв. до н. э. Письмо арамейских и др.-евр. надписей, лит-ры на др.-евр. языке, совр. языков иврит, идиш и ладино (исп.-евр. язык Средиземноморья). Курсивные разновидности: ашке-нази (Вост. Европа), сефарди (Средиземноморье), раши (раввинское письмо, в Италии, употребляется в религ. текстах). Письмо первоначально чисто консонантное. В 6-8 вв. создаётся неск. систем огласовок с помощью диакритик; основная, ныне принятая,- Тивериадская. См. Еврейское письмо.

Лит.: Дирингер Д., Алфавит, пер. с англ., M., 1963, с. 311 - 319.


КВАДРАТНОЕ УРАВНЕНИЕ, уравнение вида ах2 + bх + с = 0, где а, b, с -

к.-л. числа, наз. коэффициентами уравнения. К. у. имеет два корня, к-рые находятся по формулам:
[1137-9.jpg]

Выражение D = b2 - 4ас наз. дискриминантом К. у. Если D > О, то корни К. у. действительные различные, если D < О, то корни сопряжённые комплексные, если D = О, то корни действительные равные. Имеют место формулы Виета: x1 + x2 = -b/a, x1x2 = с/а, связывающие корни и коэффициенты К. у. Левую часть К. у. можно представить в виде а(х - x1)(x - x2). Функцию у = ах2 + + bх + с наз. квадратным трёхчленом, её графиком служит парабола с вершиной в точке М(-b/2а; с - b2/4a) и осью симметрии, параллельной оси Oy; направление ветвей параболы совпадает со знаком а. Решение К. у. было известно в геометрич. форме ещё математикам древности.


КВАДРАТУРА (лат. quadratura - придание квадратной формы), 1) число квадратных единиц в площади данной фигуры. 2) Построение квадрата, равновеликого данной фигуре. 3) Вычисление площади или интеграла (см. Интегральное исчисление).


КВАДРАТУРА в астрономии, одна из характерных конфигураций, т. е. взаимных положений, Солнца, планет, Луны на небесной сфере. Подробнее см. Конфигурации в астрономии.

КВАДРАТУРА КРУГА, задача о разыскании квадрата, равновеликого данному кругу. Под К. к. понимают как задачу точного построения квадрата, равновеликого кругу, так и задачу в ы-числения площади круга с тем или иным приближением. Задачу о точной К. к. пытались решить первоначально с помощью циркуля и линейки. Математика древности знала ряд случаев, когда с помощью этих инструментов удавалось преобразовать криволинейную фигуру в равновеликую ей прямолинейную (ем., напр., Гиппократовы. луночки). Попытки решения задачи о К. к., продолжавшиеся в течение тысячелетий, неизменно оканчивались неудачей. С 1775 Парижская АН, а затем и др. академии стали отказываться от рассмотрения работ, посвящённых К. к. Лишь в 19 в. было дано науч. обоснование этого отказа: строго установлена неразрешимость К. к. с помощью циркуля и линейки.

Если радиус круга равен г, то сторона равновеликого этому кругу квадрата равна х = r()1/2 . T. о., задача сводится к следующей: осуществить построение, в результате к-рого данный отрезок (r) был бы умножен на данное число ()1/2. Однако графич. умножение отрезка на число осуществимо циркулем и линейкой, если упомянутое число - корень алгебр, ур-ния с целыми коэффициентами, разрешимого в квадратных радикалах. T. о., окончательная ясность в вопросе о К. к. могла быть достигнута на пути изучения арифметич. природы числа я. В кон. 18 в. нем. математиком И. Ламбертом и франц. математиком А. Лежандром была установлена иррациональность числа л. В 1882 нем. математик Ф. Линдеман доказал, что число я (а значит и у л) трансцендентно, т. е. не удовлетворяет никакому алгебр, ур-нию с целыми коэффициентами. Теорема Линдемана положила конец попыткам решения задачи о К. к. с помощью циркуля и линейки. Задача о К. к. становится разрешимой, если расширить средства построения. Уже греч. геометрам было известно, что К. к. можно осуществить, используя трансцендентные кривые; первое решение задачи о К. к. было выполнено Диностратом (4 в. до н. э.) при помощи спец. кривой -т. н. квадратрисы (см. Линия). О задаче нахождения приближённого значения числа я см. в ст. Пи.

Лит.: О квадратуре круга (Архимед, Гюйгенс, Ламберт, Лежандр). С приложением истории вопроса, пер. с нем., 3 изд., М.-Л., 1936; С т рой к Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., M., 1969.


КВАДРАТУРНЫЕ ФОРМУЛЫ, формулы, служащие для приближённого вычисления определённых интегралов по значениям подинтегральной функции в конечном числе точек. Наиболее распространённые К. ф. имеют вид-.
[1137-10.jpg]

где
x1, x2, ..., xn - узлы К. ф., A1, A2, ..., An - её коэффициенты и Rn- остаточный член. Напр.,
[1137-11.jpg]

где а < < b (формула трапеций). Иногда К. ф. наз. также формулами механических, или численных, квадратур. См. также Ko-теса формулы, Симпсона формула, Чебышева формула.

Лит.: Крылов В. И., Приближённое вычисление интегралов, 2 изд., M., 1967.


КВАДРИВИУМ (лат. quadrivium. букв.- пересечение четырёх дорог), повышенный курс светского образования в ср.-век. школе, состоявший из 4 предметов: музыки, арифметики, геометрии и астрономии. Вместе с нач. курсом тривиумом К. составлял т. н. "семь свободных искусств".


КВАДРИГА (лат. quadriga), античная (др.-греч., рим.) колесница на 2 колёсах, запряжённая четвёркой лошадей, расположенных в 1 ряд; возница управлял ими стоя. Лёгкие К. применялись для конских состязаний, занимавших большое место в Олимпийских и др. обществ, играх. Описания этих состязаний есть у Гомера, Вергилия и др. античных авторов. Массивными К. пользовались императоры и полководцы-победители для торжеств. процессий. Скульптурные изображения К. с античными божествами или аллегорич. фигурами славы, счастья и т. п. в качестве возниц служили украшением античных строений. Барельефы с изображением К. часто встречаются на античных медалях, камеях и геммах. В России и Зап. Европе 18-19 вв. К. украшались фронтоны монументальных зданий и триумфальные арки.

КВАДРИЛЛИОН (франц. quadrillion), число, изображаемое единицей с 15 нулями, т. е. число 1015. Иногда К. наз. число 102".


КВАДРИРУЕМАЯ ОБЛАСТЬ, область, имеющая определённую площадь, или, что то же,- определённую плоскую меру в смысле Жордана (см. Мера множества). Отличительным свойством К. о. D является возможность заключить ее "между" двумя многоугольниками так, чтобы один из них содержался внутри данной К. о., другой, напротив, содержал её внутри, а разность их площадей могла бы быть произвольно малой. В этом случае существует только одно число, заключённое между площадями всех "охватывающих" и "охватываемых" многоугольников; его и наз. площадью К. о. D. Свойства квадрируемых областей: если К. о. D содержится в К. о. D1, то площадь D не превосходит площади D1; область D. состоящая из двух непересекающихся К. о. D1 и D2, квадрируема, и её площадь равна сумме площадей областей D1 и D2; общая часть двух К. о. D1 и D2 снова является К. о. Для того чтобы область D была квадрируема, необходимо и достаточно, чтобы её граница имела площадь, равную нулю; существуют области, не удовлетворяющие этому условию и, следовательно, неквадрируемые.

КВАДРУПОЛЬ (от лат. quadrum - четырёхугольник, квадрат и греч. polos- полюс), система заряженных частиц, полный электрич. заряд и электрич. диполь-ный момент к-рой равны нулю. К. можно рассматривать как совокупность двух одинаковых диполей с равными по величине и противоположными по направлению дипольными моментами, расположенных на нек-ром расстоянии друг от друга (см. рис.). На больших расстояниях R от К. напряжённость его электрич. поля E убывает обратно пропорционально четвёртой степени R (E ~ 1/R4), а зависимость E от зарядов и их расположения описывается в общем случае набором из пяти независимых величин, к-рые вместе составляют квадрупольный момент системы. Квадрупольный момент определяет также энергию К. во внешнем электрич. поле. В частном случае К., изображённых на рис., квадрупольный момент по абс. величине равен 2eIa, где е - заряд, l - размер диполей, а - расстояние между центрами диполей. К. является мулътиполем 2-го порядка.

Примеры относительного расположения диполей в квадруполе.


Лит.: Ландау Л. Д. и Л и ф-шиц