БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101 в последующих стадиях преобразования, особенно в случаях гидротермального метаморфизма карбонатных пород в связи с маг-матич. интрузиями. Иногда процесс К. ультраосновных пород сопровождается образованием талька, фуксита (хромовая слюда) и в этом случае наз. листвени-тизацией. В отдельных р-нах К. служит поисковым признаком нек-рых полезных ископаемых.

КАРБОНАТИТЫ, горные породы маг-матич. или метасоматич. происхождения, сложенные в основном карбонатами (кальцитом, доломитом, анкеритом) и пространственно связанные с массивами ультраосновного - щелочного состава. Термин "К." введён норв. петрографом В. Брёггером (1921), предложившим также называть кальцитовые К. с ё в и т а м и, доломитовые - раухаугитам и, биотитдоломитовые жильные - бефорситами, К. красного цвета (в к-рых карбонат частично замещён окислами железа, гл. обр. гематитом) - редбергитами.

Массивы ультраосновных - щелочных пород, среди к-рых встречаются К., как правило, располагаются вдоль крупных разломов на платформах. Они могут быть "слепыми", не выходящими на поверхность земли, и "открытыми", достигая при этом земной поверхности в виде вулканов, извергающих карбонатитовую лаву (вулкан Ол-Доиньо-Ленгаи в Танзании). По геофизич. данным, массивы прослеживаются на глубину, измеряемую многими десятками км. К. слагают центральные участки массивов, образуя штоки и трубчатые тела площадью от 0,1 до 15-20 км2 и больше, а также неправильные по форме залежи, ветвящиеся зоны, штокверки, кольцевые, конич. и радиальные дайки. В массивах открытого типа они выполняют жерла вулканов, нередко цементируя брекчированные вул-канич. породы. При развитии К. по ги-пербазитам и ийолитам в отдельных массивах возникают форстерит-апатит-магнетитовые породы с небольшим кол-вом кальцита (фоскориты, камафориты), к-рые иногда представляют высокока-честв. магнетитовые руды (напр., Ковдор на Кольском п-ове в СССР) или богатые апатитом породы [массив Пхалаборва (Палабора), ЮАР]. При развитии К. по нефелиновым сиенитам формируется ореол альбититов часто с тантало-ниобие-вым оруденением.

К. представляют собой многостадийные образования, формирующиеся в интервале темп-р от 600 до 300° С. К. ранних стадий состоят из кальцита, диопсида или форстерита, биотита или флогопита, апатита и магнетита и обогащены Ti, Zr, Та, Nb, U.

К. поздних стадий сложены на 80- 95% доломитом или анкеритом и кальцитом, реже сидеритом, стронцианитом, содержат щелочные амфиболы, серпентин, ферроферрифлогопит, эгирин, хлорит, эпидот; характерно появление сульфидов - пирита, пирротина и др., также флюорита, барита, магнетита, рутила, пирохлора, луэшита, колумбита, ферсми-та, бербанкита, бастнезита, паризита, кар-боцернаита, анкилита и др. Характеризуются высокой концентрацией Sr, Ba, F, Nb, Ce, Th, Pb, Zn, Mo.

К. и сопутствующие им породы представляют важный тип месторождений полезных ископаемых. С ними связаны крупные месторождения флогопита и вермикулита (Ковдор, Тулинское в СССР), железа (Ковдор в СССР; Пхалаборва в ЮАР), фосфора (Пхалаборва в ЮАР; Сукулу в Уганде и др.), богатые месторождения руд ниобия (Араша, Бразилия; Луэш, Заир; Ока, Канада и др.), также месторождения тантала (Нкомбва, Замбия), циркония (Пхалаборва, ЮАР), редких земель (Мрима, Кения), меди (Пхалаборва, ЮАР), флюорита (Тагна, СССР), цементного и известковистого сырья (Тороро и Сукулу, Уганда). Кроме того, возможно извлечение из нек-рых месторождений барита и стронцианита. В условиях гипергенеза на К. развивается кора выветривания, содержание полезных компонентов в которой (апатита, пирохлора, бастнезита и др.) повышается в 3-5 раз по сравнению с коренными породами.

Лит.: Гинзбург А. И. [и др.], Редкометальные карбонатиты, в кн.: Геология месторождений редких элементов, в. 1, M., 1958; Гинзбург А. И., Эпштейн E. M., Карбонатитовые месторождения, в кн.: Генезис эндогенных рудных месторождений, M., 1968; Смирнов В. И., Геология полезных ископаемых, 2 изд., M., 1969; Карбонатиты, под ред. О. Таттла и Дж. Гиттинса, [пер. с англ.], M., 1969; H е i n r i с h E. W., The geology of carbonatites, Chi., 1966. А. И. Гинзбург.

КАРБОНАТЫ, соли угольной кислоты H2CO3. Различают нормальные (средние) К., с анионом COa2- (напр., K2CO3), кислые К. (гидрокарбонаты или бикарбонаты), с анионом НСО~3 (напр., КНСО3) и основные К. [напр., Cu2(OH)2CO3 - минерал малахит]. В воде растворимы только нормальные К. щелочных металлов, аммония и таллия. В результате значительного гидролиза растворы их показывают щелочную реакцию. Наиболее трудно растворимы нормальные К. кальция, стронция, бария и свинца (2-валентного). Кислые К. хорошо растворимы в воде. При нагревании К., как правило, разлагаются (СаСОз = = CaO + CO2) ещё до достижения точки плавления; исключение представляют К. щелочных металлов и таллия. Гидрокарбонаты при нагревании переходят в нормальные К. (2NaHCO3 = Na2CO3 + + H2O + CO2). Сильными кислотами нормальные и кислые К. разлагаются с выделением CO2 (K2CO3 + H2SO4 = = K2SO4 + H2O + CO2). В природе нормальные К. широко распространены, составляя одну из групп минералов (см. Карбонаты природные). Нек-рые природные, нормальные и основные, К. являются весьма ценными металлич. рудами; таковы К. цинка, свинца, меди, железа, марганца и др. Нерудное сырьё - известняк CaCO3, магнезит MgCO3, витерит BaCO3 употребляют в строит, деле, в производстве огнеупоров, в химич. пром-сти и т. д. Из синтетич. К. в технике широко применяется сода (Na2CO3 и NaHCOs) и в меньшей степени - поташ K2CO3. Гидрокарбонаты выполняют важную физиологич. роль, являясь буферными веществами (см. Буферные системы). Об отдельных К. см. Бария карбонат, Калия карбонат. Кальция карбонат, Магния карбонат, Натрия карбонат и др.

КАРБОНАТЫ ПРИРОДНЫЕ, группа широко распространённых минералов солей угольной кислоты H2CO3. В соединении с литофильными (Na, Ca, Mg, Sr, Ba, TR), а также халькофильными (Zn, Cu, Pb, Bi) элементами образуют более 80 природных соединений (минералов). В состав К. п. входят один или два главных катиона с добавочными анионами или без них. Основой структуры К. п. является плоский треугольник [СОз]2-, у к-рого углерод находится в тройной координации по отношению к атомам кислорода. Группы [CO3]2- изолированы и соединяются через катионы или дополнительные анионы (OH)-, F-, Cl-. Структура К.п. слоистая вследствие листового расположения группы [CO3]2- (тип кальцита) или цепочечная [тип бастнезита Ce(CO3)F], когда группа [СОз]2- располагается по оси. Плоские группы [CO3]2- ориентированы либо в виде параллельных слоев и цепочек, либо по иной симметрии. Большинство К. п. кристаллизуется в ромбич., моноклинной и гексагональной (тригональ-ной) системах. К. п. характеризуются твёрдостью от 3 до 5 по минералогич. шкале, повышенной растворимостью в воде (особенно водные карбонаты щелочных металлов), лёгкой растворимостью в соляной кислоте, высоким двойным лучепреломлением, диссоциацией при нагревании. Цвет карбонатных минералов зависит от присутствия ионов-хромофоров. Карбонаты меди - зелёные и синие, урана - жёлтые, железа и редких земель - коричневые, кобальта и марганца - розовые, остальные бесцветны или слабо окрашены.

К. п. образуются в разнообразных условиях: в осадочно-морских (в мор. отложениях карбонаты кальция слагают огромные толщи известняков частью биогенного происхождения и доломитов), в гидротермальных рудных месторождениях (кальцит, сидерит, анкерит), в коре выветривания (магнезит), в метасоматич. образованиях (магнезит, сидерит), в зоне окисления полиметаллических месторождений (малахит, азурит, смитсонит, церуссит). Магматогенным путём возникают карбонатиты, с к-рыми связаны месторождения апатита и редких земель. Многие К. п. (напр., смитсонит, малахит, церуссит, стронцианит, сидерит и др.) используются как руда на Zn, Pb, Bi, Ba, Sr, Cu, Fe, Mn, редкие земли и др. металлы, как сырьё для цем. и хим. пром-сти (напр., доломит, магнезит) и как строит, материал (известняк, мрамор).

КАРБОНИЗАЦИЯ, 1) насыщение к.-л. раствора углекислым газом CO2. Широко применяется в содовом произ-ве, стр-ве, пивовар, деле и др. 2) Неправильное назв. способа разрушения растит, материалов (соломы, репейника и т. п.), содержащихся в рунной шерсти, или разрушения растит, волокон в полушерсти. К. осуществляется обработкой материалов растворами кислот или кислых солей.

КАРБОНИЛЫ МЕТАЛЛОВ, соединения металлов с окисью углерода общей формулы Mem(CO)n. Впервые (в 1890) был открыт карбонил никеля Ni(CO)4. С тех пор получены карбонилы многих металлов и нек-рых неметаллов. В зависимости от числа атомов металла в молекуле К. м. могут быть "одноядерными" и "многоядерными"; известны также смешанные К. м., напр. [Co(CO)4]2Zn. O строении К. м. см. Комплексные соединения, Валентность.

Карбонилы никеля, железа, осмия, рутения - жидкости; большинство других К. м.- кристаллич. вещества. К. м. диамагнитны, весьма летучи, чрезвычайно токсичны. Для меди, серебра, золота известны лишь карбонилгалогениды, Me(CO)X, устойчивые только в атмосфере окиси углерода. При нагревании выше определённой темп-ры К. м. разлагаются с выделением окиси углерода и металла в мелкодисперсном состоянии. Физич. свойства важнейших К. м. приведены в таблице. Указанные в таблице К. м. хорошо растворимы в органич. растворителях.

Физические свойства некоторых карбонилов металлов






















Карбонил металла



tКИП,

0C

tпл 0C



Плотн . (при 20°С),

г/см3

Растворимость в воде





Fe(CO)6

103



-20



1,455



_







C-O(CO)4

-



51



1,827



не растворим





Ni(CO)4

43



-19



1,310



низкая







Ru(CO)5





-22







не растворим























Общий способ получения К. м. заключается во взаимодействии окиси углерода с металлами или их солями при повышенных темп-pax и давлении. Наибольшее технич. значение имеют карбонилы никеля Ni(CO)4, кобальта Co(CO)4 и железа Fe(CO)5. Карбонилы применяют для получения чистых металлов, образующихся при их термич. разложении. Тер-мич. разложение карбонилов кобальта, никеля и хрома используется для нанесения металлич. покрытий, особенно на поверхности сложной формы. Карбонилы кобальта и никеля применяются в качестве катализаторов важных хим. процессов. Их используют при синтезе карбоно-вых кислот и их производных из олефи-нов, акриловой кислоты из ацетилена, при гидроформилировании:
[1127-1.jpg]

К. м.- хорошие антидетонаторы моторного топлива, однако при их сгорании образуются трудноудаляемые окислы. Нек-рые карбонилы используются для получения совершенно чистой окиси углерода.

Лит.: Белозерской H. А., Карбонилы металлов, M., 1958; Химия координационных соединений, ред. Дж. Бейлар, Д. Буш, пер. с англ., M., 1960; Химия металлоорганических соединений, под ред. Г. Цейсса, пер. с англ., M., 1964, с. 538- 604. H. А. Несмеянов.

КАРБОНИЯ ИОНЫ, карбкатионы, молекулярные частицы, содержащие трёхковалентный положительно заряженный атом углерода. К. и. обладают высокой реакц. способностью и поэтому малоустойчивы (ср. Карбанионы). К. и. образуются:

При гетеролитическом разрыве связи С - X (электронная пара, осуществляющая эту связь, уходит вместе с группой X):
[1127-2.jpg]

Напр., действие сильных кислот на три-фенилкарбинол даёт соль трифенилме-тилкатиона:

Этот К. и. устойчив вследствие распределения положит, заряда между неск. атомами углерода.

При действии апротонных K-T на галогенпроизводные, напр.:

CCl4+AlCl3 <-> CCb++AlCl4-.

При присоединении протона или другого катиона по кратной связи:

(CHO2C=CH2+H+<-> (СН3)3С+ и др. способами.

К. и. легко реагируют с анионами, с молекулами, имеющими неподелённую электронную пару или кратную связь, и с др. соединениями, атакуя места с повышенной электронной плотностью. К. и.- промежуточные частицы в большом числе теоретически и практически важных органич. реакций (напр., алкилирование и аци-лирование по Фриделю - Крафтсу, реакции электрофильного присоединения к олефинам, изомеризация и катионная полимеризация олефинов, пинаколиновая и ретропинаколиновая, Демьянова и Вагнера - Меервейна перегруппировки).

Лит.: Бреслоу Р., Механизмы орга" нических реакций, пер. с англ., M., 1968; Роберте Дж.,Касерио M., Основы органической химии, пер. с англ., ч. 1 - 2, M., 1968. Б. Л. Дяткин.

КАРБОНОВЫЕ КИСЛОТЫ, класс органических соединений, содержащих карбоксильную группу (карбоксил)
[1127-3.jpg]

В зависимости от природы радикала, связанного с группой - COOH, К. к. могут принадлежать к алифатич. (жирному), алициклич., ароматич. или гетероциклич. ряду. По числу карбоксильных групп в молекуле различают одно-, двух- и многоосновные (соответственно моно-, ди- и поликарбоновые) кислоты. Кроме того, К. к. могут быть насыщенными (предельными) и ненасыщенными (непредельными), содержащими в молекулах двойные или тройные связи. Большинство К. к. имеет тривиальные названия, многие из к-рых связаны с их нахождением в природе, напр, муравьиная, яблочная, валериановая, лимонная к-ты. По Женевской номенклатуре наименования К. к. производят от названий углеводородов с тем же числом атомов углерода, прибавляя окончание "овая> и слово "кислота", напр, метановая к-та (муравьиная), этановая к-та (уксусная) и т. д. Нередко К. к. рассматривают как производные углеводородов; напр., кислоту строения HC = С - COOH наз. ацетиленкарбоновой к-той.
[1127-4.jpg]

Кислотные свойства обусловлены способностью К. к. к диссоциации в водном растворе:

RCOOH <->± RCOO-+H+.

Как правило, К. к. слабее минеральных. Константы диссоциации одноосновных насыщенных кислот жирного ряда при 25 0C изменяются от 1,7-10-4 (муравьиная к-та) до 1,3-10~5 (высшие гомологи). Сила К. к. существенно зависит также от электрофильности радикала, связанного с карбоксилом. Введение электроотрицат. заместителей (напр., NO2, CN, Cl) в положение, соседнее с карбоксильной группой, резко повышает кислотность, напр, аиануксусная к-та CNCH2COOH примерно в 200 раз сильнее уксусной к-ты CH3COOH. По мере удаления от карбоксила влияние заместителей ослабевает. Дикарбоновые к-ты сильнее монокарбоновых, причём влияние одного карбоксила на другой тем больше, чем они ближе расположены друг к другу. Так, в ряду кислот щавелевая кислота HOOC - COOH сильнее малоновой к-ты HOOCCH2COOH, к-рая, в свою очередь, сильнее янтарной НООС(СН2)2