БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101разуются дырки, а в зоне проводимости вместо каждого "быстрого" электрона появляется два "медленных", к-рые, ускоряясь в поле, могут, в свою очередь, стать "быстрыми" и вызвать И. Вероятность ударной И. возрастает с ростом напряжённости электрич. поля. При нек-рой критич. напряжённости ударная И. приводит к резкому увеличению плотности тока, т. е. к электрическому пробою твёрдого тела.

Лит.: Грановский В. Л., Электрический ток в газе. Установившийся ток, M., 1971; Месси Г., Бархоп E., Электронные и ионные столкновения, пер. с англ., M., 1958г Энгель А., Ионизованные газы, пер. с англ., M., 1959; Федоренко H. В., Ионизация при столкновениях ионов с атомами, "Успехи физических наук", 1959, т. 68, в. 3; Атомные и молекулярные процессы, под ред. Д. Бейтса, пер. с англ., M-, 1964; Вилесов Ф. И., Фотоионизация газов и паров вакуумным ультрафиолетовым излучением, "Успехи физических наук", 1963, т. 81, в. 4; Pайзер Ю. П., Пробой и нагревание газов под действием лазерного луча, там же, 1965, т. 87, в. 1; Физика твёрдого тела, сб. статей, №2, M.-Л., 1959; Вул Б. M., О пробое переходных слоев в полупроводниках, "Журнал технической физики", 1956, т. 26, в.11; Келдыш Л. В., Кинетическая теория ударной ионизации в полупроводниках, "Журнал экспериментальной и теоретической физики", 1959, т.37, в. 3.

ИОНИЗАЦИЯ ПОВЕРХНОСТНАЯ, см. Поверхностная ионизация.

ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ, ионизующие излучения, излучения, взаимодействие к-рых со средой приводит, в конечном счёте, к ионизации атомов и молекул. К И. и. относятся: электромагнитное излучение, потоки ос-частиц, электронов, позитронов, протонов, нейтронов и др. заряженных и нейтральных частиц. Заряженные частицы ионизуют атомы среды непосредственно при столкновениях, если их кинетич. энергия достаточна для ионизации. При прохождении через среду потоков нейтральных частиц (нейтронов) или фотонов (квантов рентгеновского и у-излучений) ионизация обусловлена вторичными заряженными частицами, возникающими в результате взаимодействия первичных частиц со средой.

И. и. играют большую роль в различных физ. и хим. процессах, в биологии, медицине, с. х-ве и пром-сти. Многие хим. реакции под влиянием И. и. осуществляются с большей лёгкостью или протекают при значительно меньших темп-pax и давлениях (см. Радиационная химия). И. и. применяются для стерилизации, пастеризации и хранения пищевых продуктов, фармацевтич. препаратов и т. д. В результате действия И. и. можно получить разнообразные мутации у микроорганизмов и растений (см. Биологическое действие ионизирующих излучений).

Одновременно И. и. действуют разрушит, образом на вещество (см., напр., Радиационные дефекты в твёрдом теле, Доза, Радиобиология, Лучевая терапия). О регистрации И. и. см. в ст. Детекторы ядерных излучений.

ИОНИЙСКАЯ ШКОЛА, стихийно-материалистическое направление др.-греч. философии, возникшее и развившееся в ионийских колониях Греции в 6-4 вв. до н. э. Зародилась в г. Милет; её представители - Фалес, Анаксимандр и Анаксимен (милетская школа), Гераклит Эфесский. И. ш. принято противопоставлять пифагорейской, элейской и аттической школам. Одна из осн. идей, впервые выдвинутых философами И.ш.,- мысль о единстве всего сущего, о происхождении всех вещей из нек-рого единого первоначала, к-рое понималось при этом как та или иная вещественная стихия (вода у Фалеса, воздух у Анаксимена, огонь у Гераклита) или как "беспредельное", из к-рого выделились осн. противоположности тёплого и холодного (апейрон Анаксимандра). Сочинения представителей И. ш. написаны на ионич. диалекте, в отличие от аттич. диалекта произведений Платона и Аристотеля.

Лит.: Михайлова Э. H.. Чанышев A. H., Ионийская философия, M., 1966. А. О. Маковельский.

ИОНИЙСКИЙ ЛАД (муз.), один из старинных ладов, соответствующий совр. натуральному мажору. См. Натуральные лады, Средневековые лады.

ИОНИЙЦЫ, ионяне , одно из основных др.-греч. племён. И. получили назв. от легендарного героя Иона, считавшегося родоначальником племени. Занимали терр. Аттики, часть о. Эвбея, о-ва Хиос, Самос, Наксос и др. В 11-9вв. до н. э. они колонизовали среднюю часть зап. побережья M. Азии (обл. Ионии), потом побережья Чёрного и Мраморного морей. На ионийском диалекте, к-рый получил широкое распространение, сохранилась большая лит-ра (напр., поэмы Гомера, соч. Геродота) и значит, кол-во эпиграфич. памятников. Лит.: Tюменев А. И., К вопросу об этногенезе греческого народа, "Вестник древней истории", 1953, № 4; 1954, Mg 4.

ИОНИК, овы (от лат. ovum - яйцо), орнаментальный мотив на капителях
[1026-1-12.jpg]

и карнизах ионического и коринфского архит. ордеров. Состоит из ряда яйцеобразных выпуклостей, обрамлённых валиком и чередующихся с обращёнными остриём вниз стрельчатыми листьями.

ИОНИТОВЫЕ СИТА, молекулярные сита, обладающие ионообменными свойствами. И. с. используют для избирательного извлечения малых ионов из раствора, напр, при очистке антибиотиков и витаминов от минеральных солей, разделения на фракции полимерных ионов.

ИОНИТЫ, ионообменники, ионообменные сорбент ы, твёрдые, практически нерастворимые вещества или материалы, способные к ионному обмену. И. могут поглощать из растворов электролитов (солей, кислот и щелочей) положительные или отрицательные ионы (катионы или анионы), выделяя в раствор взамен поглощённых эквивалентное количество других ионов, имеющих заряд того же знака. Молекулярную структуру И. можно представить в виде пространственной сетки или решётки, несущей неподвижные (фиксированные) ионы, заряд к-рых компенсируют противоположно заряженные подвижные ионы, т. н. противоионы. Они-то и участвуют в ионном обмене с раствором.

По знаку заряда обменивающихся ионов И. делят на катиониты и аниониты. Первые проявляют кислотные свойства, вторые - основные. Если И. способны обменивать и катионы и анионы, их наз. амфотерными. По химич. природе И. бывают неорганич. (минеральными) и органич., по происхождению - природными и искусственными, или синтетическими. И. подразделяют на типы и группы по специфич. свойствам, особенностям структуры, назначению и т. п. В частности, И., имеющие достаточно плотную структурную сетку с "окнами" определённого размера и избирательно поглощающие лишь те ионы, к-рые способны пройти в эти "окна", наз. ионитовыми ситами (см. также Молекулярные сита).

Из неорганич. И. практич. значение имеют природные и синтетич. алюмосиликаты (нек-рьге глинистые минералы, цеолиты, пермутиты), гидроокиси и соли многовалентных металлов, напр, гидроокись и фосфат циркония. Находят применение И., полученные химич. обработкой угля, целлюлозы, лигнина и др. Однако ведущая роль принадлежит синтетич. органич. И. - ионообменным смолам.

Важнейшее свойство И. - поглотительная способность, т. н. обменная ёмкость (о. ё.). Её выражают макс, числом мг-экв ионов, поглощаемых единицей массы или объёма И. в условиях равновесия с раствором электролита (статич. о. ё.) или в условиях фильтрации раствора через слой И. до "проскока" ионов в фильтрат (динамич. о. ё.). Значения о. ё. большинства И. лежат в пределах 2-10 мг-экв/г. Определения о. ё. стандартизованы; динамическая (рабочая) о. ё. всегда меньше статической.

Кроме высокой о. ё., к И. предъявляют требования механич. прочности (гл. обр. на истирание), термич. и химич. стойкости. И. обычно выдерживают длительный срок службы и легко поддаются многократной регенерации.

В зависимости от способа получения и назначения И. выпускают в различных товарных формах: в виде порошка, зёрен неправильной формы или сферич. гранул, волокнистого материала, листов или плёнок (ионитовых мембран). На междунар. рынок И. поступают под фирменными названиями: амберлиты (США, Япония), дуолиты (США, Франция), дауэксы (США), зеролиты (Великобритания), леватиты (ФРГ), вофа-титы (ГДР) и MH. др. Осн. пром. марки отечественных И.: катиониты КУ-1, КУ-2, СГ-1, КБ-2, КБ-4, аниониты АВ-16, АВ-17, АН-1, АН-2Ф, АН-18, АН-31, ЭДЭ-10П.

Важнейшей областью применения И. была и остаётся водоподготовка. С помощью ионитовых фильтров получают деминерализованную (обессоленную) воду для паросиловых установок, многих совр. технологич. процессов и бытовых нужд. Ионитовые фильтры и электродиализные установки с ионитовыми мембранами применяют для опреснения морской или грунтовой воды с высоким солесодержанием. В гидрометаллургии И. используют в процессах обогащения сырья, разделения и очистки редких элементов. И. позволяют извлекать золото, платину, серебро, медь, хром, уран и др. металлы из растворов. Переработка радиоактивных отходов, удаление мн. вредоносных примесей из сточных вод также успешно осуществляются с использованием И.

В химич. пром-сти И. применяют для очистки или выделения продуктов органич. и неорганич. синтеза, в качестве катализаторов, как средство аналитич. контроля технологич. процессов. В пищевой пром-сти И. используют при рафинировании сахара, для улучшения качества вин и соков, в производстве витаминов и лекарственных препаратов. С их помощью из растительного и животного сырья извлекают ценные продукты биологич. синтеза, консервируют плазму крови, лечат нек-рые заболевания. И. всё шире применяют в производственной практике, науке и быту.

Лит.: Гельферих Ф., Иониты, пер. с нем., M., 1962; Салдадзе К. M., Пашков A- Б., Титов В. С., Ионообменные высокомолекулярные соединения, M., 1960; Амфлетт Ч., Неорганические иониты, пер. с англ., M., 1966; Ионообменная технология под ред. Ф. Находа и Дж. Шуберта, пер. с англ., M., 1959; Tремийон Б., Разделение на ионообменных смолах, пер. с франц., M., 1967. JI. Л. Шиц.

ИОНИЧЕСКИЕ ОСТРОВА, группа островов в Ионическом м., у зап. берегов Балканского п-ова. Принадлежат Греции. Пл. св. 2,2 тыс. км2. Состоят из 5 крупных островов (Керкира, Лефкас, Кефалиния, Итака, Закинтос) и множества мелких, отделённых от материка мелководным морем и составляющих продолжение горных хребтов Греции, раздробленных сбросами. Частые землетрясения. Преобладают резко очерченные, обрывистые берега, много удобных бухт. Острова гористы (вые. до 1628 м), сложены преим. известняками и глинистыми сланцами, вдоль берегов местами холмистые предгорья и низменности с плодородными почвами, занятые оливковыми рощами, виноградниками, цитрусовыми. На склонах преобладает маквис; сохранились дубовые леса. Овцеводство, рыболовство. На И. о. - города Керкира, Аргостолпон, Закинтос.

ИОНИЧЕСКИЙ ОРДЕР, один из трёх главных греческих архитектурных ордеров. Осн., малоазийский, вариант И. о. сложился в каменном зодчестве в ионических (см. Иония) обл. Др. Греции между 560 и 500 гг. до н. э. (храм Артемиды в Эфесе, начат в сер. 6 в. до н. э., арх. Херсифрон и Метаген). И. о. отличается от дорического ордера большей лёгкостью пропорций и более богатым декором всех частей. И. о. в неск. вариантах распространился особенно широко в эпоху эллинизма. Подробнее см. Ордер архитектурный.

ИОНИЧЕСКОЕ МОРЕ, центральная часть Средиземного м., между юго-зап. берегом Балканского и юго-вост. берегом Апеннинского п-овов и о-вами Крит и Сицилия. Соединено на С. прол. Отранто с Адриатическим м., на 3. Мессинским прол. с Тирренским м. Берега сильно расчленены, особенно на В., у берегов Греции. Крупные заливы - Патраикос и Коринфский; у берегов Италии - Таранто. На В.- Ионические о-ва. Дно представляет собой котловину с глуб. более 4000 м (макс, до 4594 м). Дорные отложения - преим. ил, ближе к берегам - илистый песок, песок, ракушечник. Поверхностные течения образуют циклональный круговорот; их скорость ок. 1 км/ч. Темп-pa воды от 14 0C в феврале до 25,5 0C в августе. Солёность более 38°/оо. У дна темп-pa ок. 13 0C, солёность 38°/оо- Рыболовство (скумбрия, красный тунец, камбала, кефаль). Крупные порты: Патры, Керкира - в Греции, Таранто, Катания - в Италии.

ИОНИШКЕЛИС, город (с 1950) в Пас-вальском р-не Литов. CCP. Расположен на правом берегу р. Муша (басе. Лие-лупе). Ж.-д. станция на линии Шяуляй - Биржай, в 69 км к В. от Шяуляя. Предприятия пищевой пром-сти. Опытная станция Литовского н.-и. ин-та земледелия. С.-х. техникум.

ИОНИШКИС, город, центр Ионишкского р-на Литов. CCP. Ж.-д. станция на линии Шяуляй - Рига. Мукомольные и масло-сыродельные предприятия. Город образован в 1657.

ИОНИЯ (Ionia), колонизованная ионийцами в 11-9 вв. до н. э. область в центр, части зап. побережья M. Азии (с прилегающими островами) между гг. Фокея и Милет. Через И. шли оживлённые торг, и культурные связи стран Востока со странами Запада, что способствовало процветанию области. Высокая культура городов И. оказала большое влияние на культурное развитие всей Греции. И. дала первых греч. философов (Фолес, Анаксимандр, Анаксимен и др.) и историков (.логографы, Геродот и др.). В 6 в. до н. э. терр. И. была завоёвана Лидией, после 546 - персами, в 4 в. до н. э. находилась под властью Македонии, со 2 в. до н. э.- Рима.

Лит.: Cook I. M., The creeks in Ionia and the East, N. Y., 1965.

ИОННАЯ АТМОСФЕРА, повышенная концентрация ионов противоположного знака в объёме, окружающем данный ион в растворе; образуется вследствие действия электрич. поля, создаваемого этим ионом. Суммарный заряд И. а. равен по величине и противоположен по знаку заряду- этого иона. Понятие И. а. даёт возможность при использовании статистич. методов упростить расчёт взаимодействия между ионами в растворе (рассматривая вместо электрич. полей, создаваемых каждым из ионов, окружающих центр, ион, непрерывное поле И. а. этого иона). Каждый из ионов, в т. ч. и любой ион, входящий в И. а. данного иона, можно рассматривать как центр, ион, обладающий своей И. а.

В. А. Киреев.

ИОННАЯ ПРОВОДИМОСТЬ в биологических системах обусловлена гл. обр. диффузией ионов; играет важную роль в транспорте веществ между отд. клеточными структурами, в генерировании и проведении биоэлек-трич. импульсов и создании разности потенциалов как между отд. органеллами клетки, так и между её наружной и внутр. средой. Суммарную И. п. (гл. обр. для K+, Na+ и Cl-) можно оценить по формуле, учитывающей ионные градиенты, коэффициенты проницаемости ионов и мембранную разность потенциалов. В теории генерирования биоэлектрических потенциалов для потоков отд. ионов пользуются понятием парциальной И. п.

ИОННАЯ СВЯЗЬ, электровалентная связь, гетеровалентная связь, один из видов химич. связи, в основе к-рого лежит электростатич. взаимодействие между противоположно заряженными ионами. Такие связи в сравнительно чистом виде образуются в галогенидах щелочных металлов, напр. KF, т. к. атомы щелочных металлов имеют по одному слабо удерживаемому электрону (энергия связи примерно 3-5 эв), а атомы галогенов обладают наибольшим сродством к электрону. Но даже в кристаллах (и тем более в молекулах) этих соединений полной передачи электрона от атома металла атому галогена большей частью всё же не происходит. Распространённые прежде представления об образовании в др. случаях двух-, трёх-или четырёхзарядных ионов Ca2+, О2-, B3+, Si4+ не подтвердились, т. к. химич. связь образуется в таких случаях более сложным путём. Для оценки степени ионности связи пользуются понятием эффективного заряда иона (см. Валентность, Химическая Связь). В. А. Киреев.

ИОННАЯ СИЛА РАСТВОРА, параметр I,