БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101емли задаётся обычно полем силы тяжести (или численно равного ей ускорения силы тяжести), к-рая является результирующей двух осн. сил: силы притяжения (тяготения) Земли и центробежной силы, вызванной её суточным вращением. Центробежная сила, направленная от оси вращения, уменьшает силу тяжести, причём в наибольшей степени на экваторе. Уменьшение силы тяжести от полюсов к экватору обусловлено также и сжатием Земли. В результате действия обеих причин сила тяжести на экваторе примерно на 0,5% меньше, чем на полюсах. Изменение силы тяжести вследствие притяжения Луны и Солнца не превосходит неск. десятимиллионных её долей. Ещё меньше изменения из-за перемещений масс в недрах Земли и масс воздуха.

Величины силы тяжести на земной поверхности зависят от фигуры и распределения плотности внутри Земли.

Поэтому изучение гравитац. поля Земли доставляет ценный материал для суждений о её фигуре и внутр. строении, в частности для разведки полезных ископаемых (см. Гравиметрическая разведка).

Определения силы тяжести производятся относит. методом, путём измерения при помощи гравиметров и маятниковых приборов разности силы тяжести в изучаемых и опорных пунктах. Сеть же опорных гравиметрических пунктов на всей Земле связана в конечном итоге с пунктом в Потсдаме (ГДР), где оборотными маятниками в нач. 20 в. было определено абс. значение ускорения силы тяжести (981 274 мгл; см. Гал). Абс. определения силы тяжести сопряжены со значит. трудностями, и их точность ниже относит. измерений. Новые абс. измерения, производимые более чем в 10 пунктах Земли, показывают, что приведённое значение ускорения силы тяжести в Потсдаме превышено, по-видимому, на 13-14 мгл. После завершения этих работ будет осуществлён переход на новую гравиметрич. систему. Однако во многих задачах Г. эта ошибка не имеет существ. значения, т. к. для их решения используются не сами абс. величины, а их разности. Наиболее точно абс. значение силы тяжести определяется из опытов со свободным падением тел в вакуумной камере. Успеху опытов способствует прогресс в технике измерений времени и расстояний.

Относит. определения силы тяжести производятся маятниковыми приборами с точностью до неск. сотых долей мгл. Гравиметры обеспечивают неск. большую точность измерений, чем маятниковые приборы, портативны и просты в обращении. Существует спец. гравиметрич. аппаратура для измерений силы тяжести с движущихся объектов (подводных и надводных кораблей, самолётов). В приборах осуществляется непрерывная запись изменения ускорения силы тяжести по пути корабля или самолёта. Такие измерения связаны с трудностью исключения из показаний приборов влияния возмущающих ускорений и наклонов основания прибора, вызываемых качкой. Имеются спец. гравиметры для измерений на дне мелководных бассейнов, в буровых скважинах. Вторые производные потенциала силы тяжести измеряются с помощью гравитационных вариометров.

Основной круг задач Г. решается путём изучения стационарного пространств. гравитац. поля. Для изучения упругих свойств Земли производится непрерывная регистрация вариаций силы тяжести во времени. Вследствие того что Земля неоднородна по плотности и имеет неправильную форму, её внешнее гравитац. поле характеризуется сложным строением. Для решения различных задач удобно рассматривать гравитац. поле состоящим из двух частей: основного - называемого нормальным, изменяющегося с широтой места по простому закону, и аномального - небольшого по величине, но сложного по распределению, обусловленного неоднородностями плотности пород в верхних слоях Земли. Нормальное гравитац. поле соответствует нек-рой идеализированной простой по форме и внутр. строению модели Земли (эллипсоиду или близкому к нему сфероиду). Разность между наблюдённой силой тяжести и нормальной, вычисленной по той или иной формуле распределения нормальной силы тяжести и приведённой соответствующими поправками к принятому уровню высот, наз. аномалией силы тяжести. Если при таком приведении принимается во внимание только нормальный вертикальный градиент силы тяжести, равный 3086 этвеш (т. е. в предположении, что между пунктом наблюдения и уровнем приведения нет никаких масс), то полученные таким путём аномалии наз. аномалиями в свободном воздухе. Вычисленные так аномалии чаще всего применяются при изучении фигуры Земли. Если при приведении учитывается ещё и притяжение считающегося однородным слоя масс между уровнями наблюдения и приведения, то получаются аномалии, наз. аномалиями Буге. Они отражают неоднородности в плотности верхних частей Земли и используются при решении геологоразведочных задач. В Г. рассматриваются также изостатич. аномалии, к-рые спец. образом учитывают влияние масс между земной поверхностью и уровнем поверхности на глубине, на к-рую вышележащие массы оказывают одинаковое давление (см. Изостазия). Кроме этих аномалий, в Г. вычисляется ряд других (Прея, модифицированные Буге и пр.). На основании гравиметрич. измерений строятся гравиметрич. карты с изолиниями аномалий силы тяжести. Аномалии вторых производных потенциала силы тяжести определяются аналогично как разности наблюдённого значения (предварительно исправленного за рельеф местности) и нормального значения. Такие аномалии в основном используются для разведки полезных ископаемых.

В задачах, связанных с использованием гравиметрич. измерений для изучения фигуры Земли, обычно ведутся поиски эллипсоида, наилучшим образом представляющего геометрич. форму и внешнее гравитац. поле Земли, сер. 18 в. франц. учёный А. Клеро выяснил закон общего изменения силы тяжести у с геогр. широтой ф в предположении, что масса внутри Земли находится в состоянии гидростатич. равновесия:
[0711-11.jpg]

к силе тяжести на экваторе, а - сжатие земного эллипсоида, w-угловая скорость суточного вращения Земли, а - большая полуось Земли. Определив w и а из астрономич. и геодезич. наблюдений и измерив силу тяжести на различных широтах, на основе приведённых формул выводится сжатие Земли а. Англ. учёный Дж. Стоке в сер. 19 в. обобщил вывод Клеро, показав, что если задать форму уровенной поверхности, направление оси и скорость суточного вращения Земли и общую массу, заключённую внутри уровенной поверхности с любым распределением плотности, то потенциал силы тяжести и его производные однозначно определяются во всём внешнем пространстве. Для решения обратной задачи - по заданному полю силы тяжести определить уровенную поверхность, частным случаем к-рой является геоид, - Стоке вывел формулу, позволяющую вычислять высоты геоида относительно эллипсоида при условии знания распределения силы тяжести по всей Земле. Теория и опыт показывают, что геоид близок к эллипсоиду, его отступления не превышают десятков метров. Голл. учёный Ф. Венинг-Мейнес вывел формулу для определения отклонений отвеса по аномалиям силы тяжести. На смену теориям Клеро и Стокса в сер. 40-х гг. 20 в. пришла теория физич. поверхности Земли, идея к-рой впервые была сформулирована сов. учёным М. С. Молоденским. Его теория свободна от гипотез о распределении масс под поверхностью наблюдения. Она позволяет вычислять интересующие элементы гравитац. поля Земли с любой необходимой точностью, определяемой только точностью измерений, проводимых на земной поверхности. Вместо геоида используется близкая к нему вспомогательная поверхность, называемая квазигеоидом.

Гравиметрич. измерения используются для изучения неоднородностей плотности в верхних частях Земли с геологоразведочными целями. На основании анализа аномалий силы тяжести делаются качеств. заключения о положении масс, вызывающих аномалии, а при благоприятных условиях проводятся количеств. расчёты. Гравиметрич. метод позволяет более рационально направить бурение и геологоразведочные работы. Он помогает исследовать горизонты земной коры и верхней мантии, недоступные бурению и обычным геол. наблюдениям. На основе изучения гравитац. поля Земли изучается проблема: находится ли Земля в состоянии гидростатич. равновесия и каковы напряжения в теле Земли? Сравнивая наблюдаемые изменения силы тяжести под влиянием притяжения Луны и Солнца с их теоретич. значениями, вычисленными для абсолютно твёрдой Земли, делают заключения о внутр. строении и упругих свойствах Земли. Знание детального строения гравитац. поля Земли необходимо также и при расчёте орбит искусств. спутников Земли. При этом осн. влияние оказывают неоднородности гравитац. поля, обусловленные сжатием Земли. Решается также и обратная задача: по наблюдениям возмущений в движении искусств. спутников вычисляются составляющие гравитац. поля. Теория и опыт показывают, что таким путём особенно уверенно определяются те особенности гравитац. поля, к-рые по гравиметрич. измерениям выводятся наименее точно. Поэтому для изучения фигуры Земли и её гравитац. поля совместно используются спутниковые и гравиметрические наблюдения, а также геодезические измерения Земли (см. Геодезическая гравиметрия).

Лит.: Шокин П. ф., Гравиметрия, М., 1960; Бровар В. В., Магницкий В. А., Шимбирёв Б. П., Теория фигуры Земли, М., 1961; Грушинский Н. П., Теория фигуры Земли, М., 1963; Каула В. М., Космическая геодезия, пер. с англ., М., 1966; Веселов К. Е., Сагитов М. У., Гравиметрическая разведка, М., 1968.

М. У. Сагитов,



ГРАВИНА (Gravina) Альфредо Данте (р. 31.10.1913, пров. Такуарембо), уругвайский писатель. Коммунист. Лит. деятельность начал как автор рассказов. Роман Г. "Границы, открытые ветру" (1951, рус. пер. 1954) содержит картину социальной борьбы в скотоводческих х-вах. Романы "Единственный путь" (1958), "От страха к гордости" (1959, рус. пер. 1962), "Время наверх" (1964), а также рассказы посвящены изображению нац. жизни Уругвая и борьбе его народа. Г.- активный обществ. деятель. Итогом его поездок по СССР и странам нар. демократии явились публицистика и книги "Путешествие по СССР и Чехословакии" (1955), "Знакомство с Румынией" (1956).

Соч.: Los ojos del monte y otros cuentos, Montevideo, 1962; Cuentos, Montevideo, 1966; Brmdis por el hungaro, Santiago de Chile, 1967; Reportaje campesino, Montevideo, 1956; в рус. пер. - Остров любви, М., 1960.

Лит.: Асеев Н., О "границах, открытых ветру" (Письмо к Альфредо Гравина), "Культура и жизнь", 1958, № 4; Кельин Ф., Путь от страха к гордости, "Иностранная литература", 1960, № 12; Кутейщикова В., Роман Латинской Америки в XX веке, М., 1964; Моnсadо J., Un escritor nacional Alfredo Gravina, "Popular", 1959, 18 diciembre. Л. С. Осповат.



ГРАВИРОВАЛЬНАЯ МАШИНА, см. в ст. Фотогравировалъная машина.



ГРАВИРОВАЛЬНЫЙ СТАНОК, машина для механич. гравирования по чертежу, шаблону или модели. Г. с. применяют для перенесения изображений с барельефов и др. выпуклых художеств. оригиналов на мягкий металл (напр., медь), камень или дерево. В металлообработке Г. с. наз. небольшой копировально-фрезерный станок с пантографом, к-рый несёт режущий инструмент (фрезу или штихель), вырезающий клейма, надписи, цифры и т. п. на деталях. В полиграфии для изготовления цинкографских клише применяют гравировальную машину (см. Фотогравировалъная машина).



ГРАВИРОВАНИЕ (от нем. gravieren, франц. graver - вырезать на чём-либо), вырезание изображения, орнамента, надписи и т. п. на поверхности твёрдых материалов - металла, камня, дерева, стекла, линолеума - резцами и др. инструментами (при Г. на металле и стекле применяется и травление кислотами). При Г. рисунок может быть выпуклым (рельефным) или углублённым. Г. применяется при изготовлении печатных форм в гравюре, валов печатных машин для тканей и обоев, в отделке мелкой скульптуры. Ювелирные изделия и оружие часто украшают Г. в сочетании с чеканкой, золочением, чернью, эмалью. Г. на кости (известное с эпохи палеолита) и на металле широко распространено в нар. иск-ве.



ГРАВИТАЦИОННАЯ ВЕРТИКАЛЬ, то же, что отвесная линия.

ГРАВИТАЦИОННАЯ МАССА, тяжёлая масса, физическая величина, характеризующая свойства тела как источника тяготения; численно равна инертной массе. См. Масса.

ГРАВИТАЦИОННАЯ ПЛОТИНА, бетонная или каменная плотина, устойчивость к-рой по отношению к сдвигающим силам (давление воды, льда, волн и пр.) обеспечивается в основном силами трения по основанию, пропорциональными собств. весу плотины.

Г, п. - весьма распространённый тип плотин, применяемый как на скальных (Бухтарминская, Красноярская ГЭС), так и на нескальных (водосливные плотины волжских гидроузлов) грунтах. Наиболее экономичные формы очертания поперечного профиля Г. п. близки к треугольнику или трапеции. Осн. параметр Г. п.- отношение толщины плотины по основанию к её высоте - зависит от характера грунта или пород основания и изменяется от 0,6 (скала) до 1,2 (глина). Наибольшая высота существующих Г. п. (1970) 284 м (плотина Гран-Диксанс в Швейцарии).

Наличие значит. запаса прочности в Г. п. позволяет облегчать их конструкции путём устройства широких температурных, осадочных швов (Братская ГЭС), пустот, заполняемых балластом, или без балласта (Боткинская ГЭС), продольных полостей и осуществления др. инж. мероприятий, улучшающих условия работы плотин и уменьшающих их стоимость. В. Н. Поспелов.



ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ, коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G*тМ/r2, где F - сила притяжения, М и т - массы притягивающихся тел, r - расстояние между телами. Другие обозначения Г. п.: у или f (реже к2). Числовое значение Г. п. зависит от выбора системы единиц длины, массы, силы. В СГС системе единиц.

С = (6,673 ± 0,003)*10-8 дн*см2*г-2 или см3 * г-1 * сек-2, в Международной системе единиц

G = (6,673±0,003)*10-11 н*м2 *кг-2 или м3*кг-1*сек-2. Наиболее точное значение Г. п. получено из лабораторных измерений силы притяжения между двумя известными массами с помощью крутильных весов.

При вычислении орбит небесных тел (напр., спутников) относительно Земли используется геоцентрическая Г. п. - произведение Г. п. на массу Земли (включая её атмосферу):

GE = (3,98603 ± 0,00003) *1014м3 *сек-2.

При вычислении орбит небесных тел относительно Солнца используется гелиоцентрическая Г. п.-произведение Г. п. на массу Солнца:

GSS = 1,32718*1020м3*сек-2. Эти значения GE и GSS соответствуют системе фундаментальных астрономических постоянных, принятой в 1964 на съезде Междунар. астрономич. союза.

Ю. А. Рябов.



ГРАВИТАЦИОННОЕ ИЗЛУЧЕНИЕ, излучение гравитационных волн, или волн тяготения, неравномерно движущимися массами (телами).

Существование гравитац. волн следует из общей теории относительности (теории тяготения) А. Эйнштейна, сформулированной им в 1916. Уравнения для гравитац. поля математически очень сложны и решены лишь для слабого поля. Решение соответствует поперечным волнам, распространяющимся со скоростью света в вакууме. Однако гравитац. волны до сих пор надёжно не обнаружены из-за их чрезвычайно малой интенсивности и крайне слабого взаимодействия с веществом. Хотя подавляющее большинство физиков убеждено в их существовании, окончательно вопрос о реальности Г. и. должен решить эксперимент.

Имеется большая аналогия между законами взаимодействия электрич. зарядов и гравитац. взаи