БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101ы - комплексы живых организмов и неорганич. компонентов, взаимосвязанных обменом веществ и энергии. Это - единая организованная система, способная к саморегулированию.

Вещество биосферы неоднородно по структуре; оно делится на живое (организмы), биогенное (созданное живыми организмами), биокосное (результат совместного действия биологич. и неорганич. процессов) и косное (неорганическое). Геологич. роль живого вещества проявляется в ряде биогеохимич. функций. Через посредство живых организмов (гл. обр. через фотосинтез) солнечная энергия вводится в физико-химич. процессы земной коры, а затем перераспределяется через питание, дыхание и размножение организмов, вовлекая в процесс большие массы косного вещества (см. Круговорот веществ). Живые организмы распространены во всех доступных им областях 3., близких к областям термодинамич. устойчивости жидкой воды (за исключением, по-видимому, областей перегретых подземных вод), и в ряде областей с темп-рой ниже О °С. Условия среды, в к-рых возможно проявление жизнедеятельности организмов,- поле устойчивости жизни - расширяется с возрастанием её приспособляемости в ходе эволюции. Границы биосферы расширялись в процессе эволюции 3. не только за счёт прямой приспособляемости организмов к более суровым условиям, но и за счёт создания защитных оболочек, внутри к-рых возникают особые условия, отличающиеся от условий окружающей среды. Этот процесс наибольший размах принял с появлением человека, к-рый способен существенно расширять сферу своего обитания. К. П. Флоренский.

Географическая оболочка

Носителем наиболее своеобразных и характерных особенностей 3. является её географическая (ландшафтная) сфера, заключающая в себе несмотря на малую относительную толщину самые яркие индивидуальные черты 3. В пределах этой сферы происходит не только тесное соприкосновение трёх геосфер - нижних разделов атмосферы, гидросферы и земной коры, но и частичное перемешивание и обмен твёрдыми, жидкими и газообразными компонентами. Ландшафтная сфера поглощает основную часть лучистой энергии Солнца в пределах волн видимого диапазона и воспринимает все прочие космич. влияния. В ней же проявляются тектонич. движения, обязанные энергии радиоактивного распада в недрах 3., перекристаллизации минералов и т. д.

Энергия различных источников (гл. обр. Солнца) претерпевает в пределах ландшафтной сферы многочисленные трансформации, превращаясь в тепловую, молекулярную, химическую, кинетическую, потенциальную, электрическую формы энергии, в результате чего здесь сосредоточивается тепло, притекающее от Солнца, и создаются разнообразные условия для живых организмов. Геогр. оболочке свойственны целостность, обусловленная связями между её компонентами, и неравномерность развития во времени и пространстве.

Неравномерность развития во времени выражается в присущих этой оболочке направленных ритмичных (периодических - суточных, месячных, сезонных, годовых и т. п.) и неритмичных (эпизодических) изменениях. Как следствие этих процессов формируются разновозрастность отдельных участков геогр. оболочки, унаследованность хода природных процессов, сохранение реликтовых черт в существующих ландшафтах. Знание осн. закономерностей развития геогр. оболочки позволяет во многих случаях прогнозировать природные процессы.

Благодаря разнообразию условий, создаваемых рельефом, водами, климатом и жизнью, ландшафтная сфера пространственно дифференцирована сильнее, чем во внешних и внутренних геосферах (кроме верхней части земной коры), где материя в горизонтальных направлениях отличается относительным однообразием.

Неравномерность развития геогр. оболочки в пространстве выражается прежде всего в проявлениях горизонтальной зональности и высотной поясности. Местные особенности (условия экспозиции, барьерная роль хребтов, степень удаления от океанов, специфика развития органич. мира в том или ином районе 3.) усложняют структуру геогр. оболочки, способствуют образованию азональных, интразональных, провинционных различий и приводят к неповторимости как отдельных регионов, так и их сочетаний.

Типы ландшафта, к-рые выделяются в ландшафтной сфере, различны по рангам. Наиболее крупное деление связано с существованием и размещением материков и океанов. Далее оно обязано шарообразной форме 3. и проявляется в разном количестве тепловой энергии, поступающей на её поверхность. Благодаря этому образуются тепловые пояса, распространяющиеся циркумполярно: жаркий, 2 умеренных и 2 холодных. Однако термич. различия определяют собой не все существенные черты ландшафта. Сочетание сферич. формы 3. с её вращением вокруг оси создают, помимо термич., заметные динамич. различия, возникающие прежде всего в атмосфере и гидросфере, но распространяющие своё влияние и на сушу. Так складываются климатич. пояса, каждому из к-рых свойственны особый режим тепла, свои воздушные массы, особенности их циркуляции и, как следствие этого,- своеобразная выраженность и ритмика ряда геогр. процессов: биогеохимич., геоморфологич., испаряемости, вегетации растительности, миграции животных, круговоротов органич. и минерального вещества и др.

В полярных (арктич., антарктич.), умеренных, тропических и экваториальном поясах в течение круглого года господствуют или преобладают формирующиеся в них одноимённые массы воздуха. Между этими поясами располагаются переходные пояса, где в течение года закономерно чередуются воздушные массы смежных поясов; это находит отражение в наименованиях переходных поясов с применением приставки "суб" (субполярные, субтропич. и субэкваторнальные пояса).

Членение 3. на широтные климатич. пояса оказывает столь существенное влияние на прочие стороны ландшафта, что деление природы 3. по всему комплексу признаков на пояса физико-географические почти соответствует климатич. поясам, в основном совпадая с ними по числу, конфигурации и названиям. Географич. пояса существенно различаются по многим признакам в Сев. и Юж. полушариях 3., что позволяет говорить об асимметрии географич. оболочки.

Дальнейшее выявление горизонтально-зональных различий происходит в прямой зависимости от размеров, конфигурации суши и от связанных с этим различий в количестве влаги и режиме увлажнения. Здесь наиболее резко выступает влияние секторных различий между приокеанич., переходными и континентальными частями (секторами) материков. Именно в конкретных условиях отдельных секторов формируются разнородные участки географич. поясов суши, именуемые физико-географич. зонами. Многие из них одноимённы с зонами растительности (лесная, степная и др.), но это отражает лишь физиономич. представленность растительного покрова в облике ландшафта.

Горизонтальная зональность внутри различных географич. поясов проявляется по-разному. Отдельные зоны и подзоны полярных и субполярных поясов протягиваются параллельно их простиранию и сменяют одна другую циркумполярно. В умеренном поясе, к-рый на суше развит преим. в Сев. полушарии, широтное простирание зон свойственно только континентальному сектору. В переходных секторах простирание зон переходит в диагональное по отношению к градусной сети, а в приокеанич., особенно в их более низких широтах, зоны сменяют одна другую с долготой.

Примерами физико-географич. зон Сев. полушария могут служить: в арктич. поясе - зоны ледяных и арктич. пустынь; в субарктич. поясе - зоны тундры (с подзонами арктич., мохово-лишайниковой и кустарниковой тундры) и лесотундры; в умеренном поясе - зоны: лесная (с подзонами редколесий, нескольких типов тайги, смешанных и лиственных лесов), лесостепная, степная (с подзонами разнотравных и сухих степей), полупустынная и пустынная (с подзонами сев. и юж. пустынь).

В субтропич. поясах смена зон происходит преим. с долготой; напр., в субтропиках Евразии и Сев. Африки с 3. на В. сменяются влажные лесные субтропики, полусухие (средиземноморские) лесокустарниковые субтропики и субтропич. зоны лесостепи, степей, полупустынь и пустынь. Тропич. пояса выражены гл. обр. во внутриконтиненталъных секторах материков. В субэкваториальных поясах в зависимости от конфигурации суши встречаются сложные сочетания членения на широтные зоны (от сухих и более влажных саванн и редколесий к муссонным лесам) и на разнородные секторные варианты ландшафта (лесные в океанич. и сухосаванновые в континентальных секторах). В экваториальном поясе отмечаются преим. секторные различия.

В соотношениях тепла и увлажнения зон наблюдаются нек-рые пространств. аналогии; так, зоны с относит. равновесием тепла и увлажнения, где тепла хватает как раз для испарения влаги, не удалённой стоком, закономерно повторяются и разных поясах (лесостепи, саванны).

Пояса, аналогичные геогр. поясам суши, прослеживаются и в Мировом океане. Их положение определяется теплом, испарением, облачностью, солёностью и плотностью воды, к-рые в осн. являются функцией радиан, баланса; господствующими ветрами и мор. течениями; вертикальной циркуляцией воды, содержанием в ней кислорода, планктона и высших организмов, а на дне также бентоса. Обычно эти условия изменяются с широтой постепенно, а мор. течения, подчиняясь силе Корнолиса и в соответствии с очертаниями берегов, выходят за пределы поясов господствующих ветров и оказывают существенное влияние в др. поясах. Поэтому для определения границ геогр. поясов в океане более важны линии конвергенции (сходимости) осн. водных масс, кромки многолетних (летом) и сезонных (зимой) льдов в приполярных областях, широтные оси центров действия атмосферы. По ту и другую сторону от этих осей ветры имеют (при господствующем зап.-вост. переносе) противоположное направление. Д. Л. Арманд, Ю.К.Ефремов.



IV. ГЕОЛОГИЧЕСКАЯ ИСТОРИЯ И ЭВОЛЮЦИЯ ЖИЗНИ НА ЗЕМЛЕ Геологическая история Земли

Геол. история 3. восстанавливается на основании изучения горных пород, слагающих земную кору. Абс. возраст самых древних из известных в наст. время горных пород составляет ок. 3,5 млрд. лет, а возраст 3. как планеты оценивается в 4,5 млрд. лет. Образование 3. и начальный этап её развития относятся к догеологичсской истории. Геол. история 3. делится на дан неравных этапа: докембрий, занимающий ок. 5/6 всей геол. истории (ок. 3 млрд. лет), и фанерозой (см. Фанерозойский эон), охватывающий последние 570 млн. лет. Докембрий делится на архей и протерозой. Фанерозой включает палеозойскую, мезозойскую и кайнозойскую ары (см. Геохронология).

Наиболее изучена история материковой части земной коры, в пределах к-рой ок. 1500-1600 млн. лет тому назад закончилось в основном образование древних (дожембрийских) платформ, составивших основные массивы совр. материков. Это: Вост.-Европейская (Русская) в Европе; Сибирская, Китайско-Корейская, Южно-Китайская и Индийская в Азии; Африканская, Австралийская, Южно- и Северо-Американская (Канадская), а также Антарктическая платформы. История земной коры материков в значит. степени определяется развитием её геосинклинальных поясов, состоящих из отдельных геосинклинальных систем. Эволюция всех геосинклин. систем начинается длительным геосинклинальным этапом заложения и развития глубоких субпараллельных прогибов, или геосинклиналей, разделённых поднятиями (геоантиклиналями) н обычно заполненных морем, в водах к-poгo отлагались мощные толщи осадочных и вулканич. пород. Затем геосинкл. система претерпевала интенсивную складчатость, к-рая преобразовывала её в складчатую систему (складчатое сооружение), вступала в стадию горообразования (орогенеза) и высоко вздымалась в Целом в виде горной страны. На этом заключительном орогенном этапе только кое-где в новообразованных внутренних (межгорных) впадинах и формирующихся вдоль окраин соседних платформ передовых (краевых) прогибах накапливались гл. обр. грубообломочные отложения и на обширных площадях развивался связанный с разломами земной коры т. н. орогенный вулканизм. С концом орогенного этапа складчатая система теряла былую тектонич. подвижность, её рельеф постепенно выравнивался денудацией, и она превращалась в фундамент молодой платформы, внутри к-рой впоследствии обособлялись участки, перекрывавшиеся вновь отложенным платформенным чехлом (плиты).

Развитие большинства фанерозойских геосинклин. систем укладывается в рамки немногих обобщённых тектонических циклов планетарного значения. Хотя начало и конец каждого из них в разных случаях разнятся на десятки Млн. лет, в целом они являются естественными стадиями общей эволюции структуры материковой коры. Два из них - каледонский и герцинский - приходятся на палеозойскую эру (570-230 млн. лет назад). Завершившие их каледонская и герцинская складчатости сформировали фундаменты самых обширных и типичнее всего построенных эпипалеозойских молодых платформ. Всю последующую тектоническую историю часто рассматривают как единый альпийский цикл. Однако он отчётливо распадается на частные циклы не всеобщего значения, в значительной степени перекрывающие друг друга хронологически, но имеющие вполне самостоятельное значение в развитии определённых регионов земного шара. Первый из них наиболее характерен для геосинклинального пояса, окружающего Тихий океан. Начало его относится к последнему отрезку палеозойской эры - пермскому периоду и совпадает по времени с завершающими этапами герцинского цикла в других областях. Но основная часть приходится уже на мезозойскую эру (230-70 млн. лет назад), почему и сам цикл и завершающая его складчатость называются обычно мезозойскими. Мезозойские складчатые системы до сих пор отличаются гористым рельефом, и настоящие эпимеаозойские плиты с хорошо развитым платформенным чехлом мало распространены. Другой, собственно альпийский цикл развития наиболее типичен для Средиземноморского геосинклинического пояса, протянувшегося из Юж. Европы через Гималаи в Индонезию, и менее типично проявился в нек-рых геосинклии. системах Тихоокеанского побережья. Его начало приходится на ранний мезозой, а окончание - на разные отрезки последней, кайнозойской эры геологич. прошлого.

Лишь в немногих альпийскихгеосинклин. системах существуют ныне развивающиеся геосинклинали (напр., глубоководные впадины внутренних морей типа Средиземного). Подавляющее их большинство переживает орогенный этап и на их месте расположены высокие и интенсивно растущие горные системы - области молодой кайнозойской, или альпийской, складчатости. Современные геосинклинальные системы (или области) сосредоточены преим. по зап. периферии Тихого океана, в меньшей мере - в других приокеанических районах. Иногда их также причисляют к площадям кайнозойской складчатости, хотя они и находятся в наиболее активной стадии геосинклин. развития.

После окончания цикла геосинклин. развитие может повториться, но всегда какая-то часть геосинклин. областей в конце очередного цикла превращается в молодую платформу. В связи с этим в течение геол. истории площадь, занятая геосинклиналями, уменьшалась, а площадь платформ увеличивалась. Именно геосинклин. системы являлись местом образования и дальнейшего нарастания континент. коры с сё гранитным слоем. Периодич. характер вертик. движений в течение тектонич. цикла (преимуществ. опускание в начале и преимуществ. поднятие в конце цикла) каждый раз приводил к соответств. изменениям рельефа поверхности, к смене трансгрессий и регрессий моря. Те же периодич. движения влияли