БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101алами в узкие, ограниченные в пространстве пучки (лучи), тогдакак рентгеновские лучи, обладающие высокой проникающей способностью, практически невозможно сфокусировать-при рентгеноскопии получаются лишь теневые, силуэтные изображения.
[922-9.jpg]

Рис. 2. Схемы звуковидения: а - в отражённых лучах (общая схема); б - по методу дифракции; в ~ в "эвуковизоре" (лабораторная модель); 1 - источник (излучатель) ультразвука; 2 - объект наблюдения; 3 - акустический объектив; 4 - ультразвуковое изображение; 5 - преобразователь; 6 - видимое изображение (экран); 7 - лазер; 8 - ультразвуковые волны; 9 - электронноакустический преобразователь; 10 - усилитель.

Заметитьс помощью рентгеновских лучей в металлич. листе толщиной 5 мм расслоение в неск. мкм - задача практически неразрешимая. А ультразвуковой луч, отражённый от границы раздела металл - газ, достаточно чётко "рисует" такие расслоения (рис. 1, а). Почечный камень размером 2 мм для рентгеновских лучей почти не различим, 3. выявляет его вполне отчётливо (рис. 1, б).

Общая схема 3. (рис. 2, а) включает источник ультразвука, объект наблюдения, акустический объектив, с помощью к-рого формируется ультразвуковое изображение, и преобразователь ультразвукового изображения в оптически видимое.

Применяют также способ 3., осн. на свойстве свободно взвешенных мельчайших металлич. пластинок-чешуек поворачиваться плоскостью поперёк направления распространения ультразвука. Исследуемый объект помещается между источником ультразвука и сосудом с жидкостью, в к-рой плавают чешуйки. Освещённые пучком параллельных световых лучей переориентированные чешуйки образуют светлое изображение на сером фоне, соответствующее распределению интенсивности ультразвука (звукового давления), прошедшего сквозь объект. Схема установки для получения видимого изображения с использованием явления дифракции лазерного луча на ультразвуковой волне, прошедшей через объект наблюдения, показана на рис. 2, 6. Световой пучок лазера, сформированный оптич. системой, пронизывает жидкость, в к-рой находится объект наблюдения. Показатель преломления жидкости, облучаемой ультразвуком, изменяется таким образом, что оптич. луч, проходя жидкость, создаёт на экране дифракционные полосы, содержащие изображение объекта.

Системы 3.,использующие приведённые методы визуализации ультразвуковых полей, имеют чувствительность порядка 1-0,01 вт/см2 . Однако для мн. практич. целей необходима значительно более высокая чувствительность. Этому требованию отвечают электронноакустические преобразователи (ЭАП), чувствительность к-рых 10-9-10-10вт/см2. Впервые на возможность преобразования ультразвукового изображения в оптически видимое с помощью электроннолучевых трубок указал (1936) сов. учёный С. Я. Соколов. Развитие методов визуализации ультразвуковых полей и совершенствование аппаратуры 3., в частности разработка высокочувствит. ЭАП, обусловили создание "звуковизоров" (рис. 2, в) и др. средств 3. для применения их в дефектоскопии, мед. диагностике, при строит. работах, в подводной навигации и др.

Примером практич. 3. может служить метод поверхностного рельефа, при к-ром ультразвуковое изображение исследуемого объекта воссоздаётся на свободной поверхности жидкости. Под воздействием ультразвука на поверхности жидкости, напр. воды, образуется рябь, хорошо заметная при косом освещении. Очертания и рельеф ряби воспроизводят ультразвуковое изображение объекта (рис. 3). По такому принципу работают установки для обнаружения расслоений и трещин в листовом материале. Исследуемый лист перемещается в водяной ванне над облучающим ультразвуковым "прожектором".

Рис. 3. Звуковидение по метолу поверхностного рельефа а - схема; б - видимое изображение; 1 - источник звука; 2 - объект; 3 - вогнутое зеркало (объектив); 4 - жидкость; 5 - сосуд; 6 - экран.
[922-10.jpg]

Звуковая линза, помещённая над листом, фокусирует звуковое изображение дефектов на поверхности воды.

Лит.: Розенберг Л. Д., Визуализация ультразвуковых изображений, "Вестник АН СССР", 1958, № 3: Ощепков П. К., Меркулов А. П., Интроскопия, М., 1967; Азаров Н. Т., Телешевский В. И., Визуализация объектов в ультразвуковых полях методом дифракции света на ультразвуке, "Акустический журнал", 1971, т. 17, в. 3; Holder F. W., Sonic holography, "Electronics World", 1970, v. 83, Ms 6, p. 32-35; Aprahamian R., Вhuta P., G. NDT by acousto-optical imagine, "Materials Evaluation", 1971, v. 29, Ms 5. К. М. Климов.



ЗВУКОВОГО ПОЛЯ ВИЗУАЛИЗАЦИЯ,методы получения видимой картины звукового поля. 3. п. в. применяется для изучения распределения величин, характеризующих звуковые поля сложной формы, для визуализации ультразвуковых изображений, получаемых при помощи ультразвуковых фокусирующих систем (см. Фокусировка звука), для целей ультразвуковой дефектоскопии и мед. диагностики. Простейшим лримером 3. п. в. являются т. н. Хладни фигуры. Получить картину распределения звукового давления можно, напр., с помощью небольшого приёмника звука, обходя (сканируя) им исследуемое поле; для визуализации синхронно с приёмником звукового давления перемещается связанный с ним точечный источник света, яркость к-рого модулируется напряжением на выходе звукоприёмника (рис. 1). Более современный вариант подобного метода 3. п. в. осуществляется в электронноакустич. преобразователях: распределение звукового давления преобразуется с помощью пьезоэлектрич. пластинки в соответствующее распределение электрич. потенциала на её поверхности, к-рое считывается электронным лучом и далее посредством обычных телевизионных приёмов (подобно тому, как это делается в звуковизорах) на экране кинескопа получается видимое изображение звукового поля. Изменение плотности среды в звуковом поле приводит к изменению показателя преломления для световых лучей; оно может быть выявлено чисто оптическими приёмами, как, напр., теневым методом, методом фазового контраста, дифракцией света на ультразвуке и др.

Все эти способы широко применяются для исследования ультразвуковых полей сложной формы (рис. 2). В ультразвуковой дефектоскопии применяются методы поверхностного рельефа и диска Рэлея. Первый из них основан на свойстве свободной поверхности жидкости слегка вспучиваться под действием звуковых лучей, падающих изнутри жидкости. Получающийся при этом рельеф хорошо виден при косом освещении (см. Звуковидение). В основе второго лежит свойство свободно подвешенных в звуковом поле пластинок поворачиваться параллельно фронту звуковой волны. Для реализации этого способа в смеси воды и ксилола образуют взвесь мельчайших алюминиевых чешуек. В отсутствии звука эти чешуйки ориентированы беспорядочно, образуя при освещении матово-серую поверхность, а под действием звуковой волны часть из них принимает определённую ориентацию и в результате отражения света на сером фоне появляется видимое изображение звукового поля.

Существуют методы 3. п. в., основанные на вторичных эффектах, возникающих при распространении интенсивных ультразвуковых воли в жидкости: теплового эффекта, дегазации жидкости, ускорения процессов диффузии, акустич. кавитации, воздействия на фотослой и т. д. Напр., для реализации теплового метода в исследуемое поле помещают тонкий экран из хорошо поглощающего звук материала. Неравномерный нагрев этого экрана под действием поглощаемых ультразвуковых лучей может быть визуализирован различными способами: применением термочувствит. красок или чувствительного к инфракрасным лучам электронноооптич. преобразователя, возбуждением или гашением люминесцентного экрана и т. д. На ускорении фотографич. проявления основан фотодиффузионный способ 3. п. в., при к-ром обычная, предварительно засвеченная фотобумага погружается в разбавленный раствор проявителя; в местах, на к-рые действует ультразвук, диффузия проявителя в желатину сильно ускоряется и бумага быстро чернеет.

Лит.: Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., 2 изд., М., 1957, гл. 3, § 4, гл. 6, § 4; Розенберг Л. Д. Визуализация ультразвуковых изображений, "Вестник АН СССР", 1958, №3; Матаушек И., Ультразвуковая техника, пер. с нем., М., 1962, гл. 7.



ЗВУКОВОЕ ДАВЛЕНИЕ, давление, дополнительно возникающее при прохождении звуковой волны в жидкой и газообразной среде. Распространяясь в среде, звуковая волна образует сгущения и разрежения, к-рые создают добавочные изменения давления по отношению к среднему значению давления в среде. Т. о., 3. д. представляет собой переменную часть давления, т. е. колебания давления относительно среднего значения, частота к-рых соответствует частоте звуковой волны. 3. д.- основная количеств. характеристика звука. Единица измерения 3. д. в системе единиц СИ - ньютон па м2(ранее употреблялась единица бар: 1 бар = 10-1 н/м2). Иногда для характеристики звука применяется уровень звукового давления - выраженное в дб отношение величины данного 3. д. р к пороговому значению 3. д. р0 = 2*10-5 н/м2. При этом число децибел N = 20 lg (p/р0). 3. д. в воздухе изменяется в широких пределах - от 10-5 н/м2 вблизи порога слышимости до 103 н/м2 при самых; громких звуках, напр. шумах реактивных самолётов. В воде на ультразвуковых частотах порядка неск. Мгц с помощью фокусирующих излучателей получают значение 3. д. до 107 н/м2. При значит. 3. д. наблюдается явление разрыва сплошности жидкости - кавитация. 3. д. следует отличать от давления звука.



ЗВУКОВОЕ КИНО, производство и показ кинофильмов, изображение в к-рых, в отличие от "немых", сопровождается речью, музыкой, звуковыми эффектами (шумами).

Попытки соединить (синхронизировать) изображение со звуком делались ещё на ранней стадии существования кинематографа: использовался муз. аккомпанемент (пианино, оркестр и др.), привлекались актёры, к-рые синхронно с изображением воспроизводили речь, песни персонажей фильма. В кон. 19 - нач. 20 вв. предпринимались многочисл. попытки создать устройство для синхронного воспроизведения звука с показом фильма [кинетофон Т. Эдисона (США, 1899), хронефон Л. Гомона (Франция, 1901), использование спец. граммофонных пластинок и др.]. Только изобретение и совершенствование метода совмещения изображения и фотографической (позже магнитной) звукозаписи на общем носителе - киноплёнке - позволило достичь их синхронности при показе звукового фильма. Рус. учёные А. Ф. Виксцемский в 1889 и И.Л.Поляков в 1900 впервые предложили схему воспроизведения фотографич. записи звука посредством фотоэлемента и использования позитива фонограммы. Перспективным явилось также изобретение Ю. Лооста (США), разработавшего в 1906 систему фотографич. записи звуковых колебаний на киноплёнку. Практич. системы 3. к. были созданы почти одновременно в СССР, США и Германии. Сов. системы 3. к. с фотографич. записью звука начали разрабатываться в 1926 в Москве группой изобретателей под руководством П. Г. Тагера (система "Тагефон") и в 1927 в Ленинграде под руководством А. Ф. Шорина. В системе Шорина фонограмма имела переменную ширину дорожки записи, в системе "Тагефон" - переменную оптич. плотность. Первая кинопрограмма с записью звука по системе Шорина показана в 1929. Первый сов. полнометражный художеств. фильм с записью звука по системе "Тагефон" - "Путёвка в жизнь" (1931, реж. Н. В. Экк).

Разработка и внедрение в 50-х гг. 20 в. магнитной записи и воспроизведения звука, а также создание и освоение новых видов кинематографа (широкоэкранного, широкоформатного, панорамного, стереоскопического, полиэкранного и др.) привели к значит. повышению качества показа фильмов. Широкие углы рассматривания цветных изображений создали т. н. эффект присутствия зрителя. Впечатление усиливалось стереофонич. воспроизведением звука, позволившим создавать "пространственную звуковую перспективу": звук как бы "следует" за изображением его источника, вызывая иллюзию реальной действительности (см. Стереофоническая звукозапись).

Техника съёмки и показа звуковых фильмов иллюстрируется структурной схемой (см. рис.). Объект съёмки фиксируется на киноплёнку съёмочным аппаратом. Звуковые колебания воспринимаются микрофоном и после предварит. усиления, регулировки уровня записи, последующего усиления поступают на аппарат записи, фиксирующий звук на отд. магнитной ленте. Различные звучания (речь, музыка, шумы), записанные при произ-ве фильма, обычно располагаются на неск. лентах (от 2 до 8 и более). После окончания монтажа кинофильма осуществляется перезапись звука: сигналы с речевых, музыкальных и шумовых фонограмм сводятся на одной фонограмме с необходимым соотношением уровней громкости. С негативов изображения и фонограммы, сдаваемых киностудиями на кинокопировальные фабрики, производится массовая печать (тиражирование) совмещённых позитивных копий фильма, поступающих затем в кинотеатры. В кинопроекционном аппарате совмещённая позитивная копия продвигается со скоростью, соответствующей в общем случае скорости съёмки, и изображение проецируется на экран; фотографич. фонограмма переменной шириныили переменной плотности (см. Звукозапись), полученная перезаписью с магнитной фонограммы, пересекает световой поток лампы просвечивания в месте равномерного движения киноленты (в звуковом блоке) и изменяет (модулирует) его в соответствии с записанными звуковыми колебаниями.

Фотоэлемент превращает падающий на него переменный световой поток в электрич. колебания, к-рые после усилителя фототоков и усилителя воспроизведения поступают на громкоговоритель, установленный у экрана в зрительном зале кинотеатра. В случае магнитной звуковой дорожки воспроизведение звука осуществляется магнитной головкой вместо фотоэлемента. В 3. к. применяются: синхронная запись - запись звука одновременно со съёмкой в павильоне и вне его (наиболее распространённый, сложный вид, требующий определённой акустики павильона, соблюдения режима тишины и пр.); предварительное и последующее озвучение с раздельной записью звука и изображения; дублирование звуковых фильмов - процесс изготовления новой фонограммы, обычно на др. языке; специальные виды звукозаписи, проводимые для получения особых эффектов (телефонный разговор, эхо, изменение высоты звука и пр.). Введение 3. к. явилось революционным этапом в развитии кинематографа как иск-ва, значительно выросли его идейно-художеств. возможности, обогатился арсенал выразительных средств.

Лит.: Шорин А. Ф., Как экран стал говорящим, М., 1949; Тагер П. Г., Из истории развития советского звукового кино, "Изв. АН СССР. Серия физическая", 1949. т. 13, № 6; Высоцкий М. 3., Магнитная звукозапись кинофильмов, М., 1960; Голдовский Е. М., Основы кинотехники, М., 1965; Коноплев Б. Н., Основы фильмопроизводства, М., 1969.

М, 3. Высоцкий.



ЗВУКОВОЕ ПОЛЕ, область пространства, в к-рой распространяются звуковые волны, т. е. происходят акустич. колебания частиц упругой среды (твёрдой, жидкой или газообразной), заполняющей эту область. 3. п. определено полностью, если для каждой его точки известно изменение во времени и в пространстве к.-л. из величин, характеризующих звуковую волну: смещения колеблющейся частицы из положения равновесия, колебательной скорости частицы, звукового давления в среде; в отд. случаях представляют интерес изменения плотности или темп-ры среды при наличии 3. п. Понятие 3. п. применяет