БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101>138

146

461

1620

1405
ср, ж

1386

138

155

542

1800

1692

Малое различие этих теплоёмкостей показывает, что тепловое движение в Ж. и твёрдых телах вблизи темп-ры кристаллизации имеет примерно одинаковый характер.

Молекулярная теория Ж. По своей природе силы межмолекулярного взаимодействия в Ж. и кристаллах одинаковы и имеют примерно одинаковые величины. Наличие в Ж. сильного межмолекулярного взаимодействия обусловливает, в частности, существование поверхностного натяжения на границе Ж. с любой др. средой. Благодаря поверхностному натяжению Ж. стремится принять такую форму, при к-рой её поверхность (при данном объёме) минимальна. Небольшие объёмы Ж. имеют обычно характерную форму капли. В отсутствии внешних сил, когда действуют только межмолекулярные силы (напр., в условиях невесомости), Ж. приобретает форму шара. Влияние поверхностного натяжения на равновесие и движение свободной поверхности Ж., границ Ж. с твёрдыми телами или границ между несмешивающимися Ж. относится к области капиллярных явлений.

Фазовое состояние вещества зависит от физ. условий, в к-рых оно находится, гл. обр. от темп-ры Т и давления р. Характерной определяющей величиной является зависящее от темп-ры и давления отношение е (Т, р) средней потенциальной энергии взаимодействия молекул к их средней кинетич. энергии.

[910-15.jpg]

Вид радиальной функции распределения g(r) для жидкого натрия (в условных единицах): а ~ распределение частиц в зависимости от расстояния r; 6 - число частиц в тонком сферическом слое как функция расстояния r. Пунктиром показано распределение молекул при отсутствии упорядоченности в их расположении (газ). Вертикальные отрезки - положения атомов в кристаллич. натрии, числа при них - количество атомов в соответствующих координационных сферах (т. н. координационные числа).

Для твёрдых тел e (Т,р) " 1; это значит, что силы межмолекулярного взаимодействия велики и удерживают молекулы (атомы, ионы) вблизи равновесных положений - узлов кристаллич. решётки, несмотря на тепловое движение частиц. В твёрдых телах тепловое движение имеет характер коллективных колебаний атомов (ионов) около узлов кристаллич. решётки.

В газах осуществляется обратный предельный случай е(Т,р) << 1: силы притяжения между молекулами недостаточны, чтобы удержать их вблизи друг от друга, вследствие чего положения и скорости молекул распределены почти хаотически.

Для Ж. е (Т,р)~1: интенсивности упорядочивающих межмолекулярных взаимодействий и разупорядочивающего теплового движения молекул имеют сравнимые значения, чем и определяется вся специфичность жидкого состояния вещества. Тепловое движение молекул в неме-таллич. Ж. состоит из сочетания коллективных колебательных движений того же типа, что и в кристаллич. телах, и происходящих время от времени скачков молекул из одних временных положений равновесия (центров колебаний) в другие. Каждый скачок происходит при сообщении молекуле энергии активации, достаточной для разрыва её связей с окружающими молекулами и перехода в окружение др. молекул. В результате большого числа таких скачков молекулы Ж. более или менее быстро перемешиваются (происходит самодиффузия, к-рую можно наблюдать, напр., методом меченых атомов). Характерные частоты скачков составляют ~ 1011-1012 сек-1 для низкомолекулярных Ж., много меньше для высокомолекулярных, а в отд. случаях, напр. для сильно вязких Ж. и стёкол, могут оказаться чрезвычайно низкими.

При наличии внешней силы, сохраняющей своё направление более длительное время, чем интервалы между скачками, молекулы перемещаются в среднем в направлении этой силы. Т. о., статические или низкочастотные механич. воздействия приводят к проявлению текучести Ж. как суммарному эффекту от большого числа молекулярных переходов между временными положениями равновесия. При частоте воздействий, превышающей характерные частоты молекулярных скачков, у Ж. наблюдаются упругие эффекты (напр., сдвиговая упругость), типичные для твёрдых тел. Однородность и изотропность нормальных Ж. молекулярная теория Ж. объясняет отсутствием у них дальнего порядка во взаимных положениях и ориентациях молекул (см. Дальний порядок и ближний порядок). Положения и ориентации двух или более молекул, расположенных далеко друг от друга, оказываются статистически независимыми. В идеальном кристаллич. теле, как правило, существует "жёсткий" дальний порядок в расположении и ориентации молекул (атомов, ионов). В жидком кристалле дальний порядок наблюдается лишь в ориентации молекул, но он отсутствует в их расположении.

Ж. иногда разделяют на неассоциированные и ассоциированные, в соответствии с простотой или сложностью их термодинамич. свойств. Предполагается, что в ассоциированных Ж. есть сравнительно устойчивые группы молекул - комплексы, проявляющие себя как одно целое. Существование подобных комплексов в нек-рых растворах доказывается прямыми физ. методами. Наличие устойчивых ассоциаций молекул в однокомпонентных Ж. недостоверно.

Основой совр. молекулярных теорий жидкого состояния послужило экспериментальное обнаружение в Ж. ближнего порядка - согласования (корреляции) во взаимных положениях и ориентациях близко расположенных групп, состоящих из 2, 3 и большего числа молекул. Эти статистич. корреляции, определяющие молекулярную структуру жидкости, простираются на область протяжённостью порядка неск. межатомных расстояний и быстро исчезают для далеко расположенных друг от друга частиц (отсутствие дальнего порядка). Структурные исследования реальных Ж., позволившие установить эту особенность жидкого состояния, производятся методами рентгеновского структурного анализа и нейтронографии.

По структуре и способам их описания Ж. делят на простые и сложные. К первому сравнительно малочисленному классу относят однокомпонентные атомарные жидкости. Для описания свойств таких Ж. достаточно указать лишь взаимное расположение атомов. К этому классу Ж. относятся жидкие чистые металлы, сжиженные инертные газы и (с некоторыми оговорками) Ж. с малоатомными симметричными молекулами, напр. ССI4. Для простых Ж. результаты рентгено-структурного или нейтронографического анализа могут быть выражены с помощью т. н. радиальной функции распределения g(r) (см. рис.). Эта функция характеризует распределение частиц вблизи произвольно выбранной частицы, т. к. значения g(r) пропорциональны вероятности нахождения двух атомов (молекул) на заданном расстоянии r друг от друга. Ход кривой g(r) наглядно показывает существование определённой упорядоченности в простой Ж.- в ближайшее окружение каждой частицы входит в среднем определённое число частиц. Для каждой Ж. детали функции g(r) незначительно меняются с изменением темп-ры и давления. Расстояние до первого пика определяет среднее межатомное расстояние, а по площади под первым пиком можно восстановить среднее число соседей (среднее координационное число) атома в Ж. В большинстве случаев эти характеристики вблизи линии плавления оказываются близкими к кратчайшему межатомному расстоянию и координац. числу в соответствующем кристалле. Однако, в отличие от кристалла, истинное число соседей у частицы и истинное межатомное расстояние в Ж. являются не постоянными числами, а случайными величинами, и по графику g(r) устанавливаются лишь их средние значения.

При сильном нагревании Ж. и приближении к газовому состоянию ход функции g(r) постепенно сглаживается соответственно уменьшению степени ближнего порядка. В разреженном газе g(r)=1.

Для сложных Ж. и для жидких смесей расшифровка рентгенограмм более сложна и во многих случаях полностью не может быть осуществлена. Исключение составляет вода и нек-рые др. низкомолекулярные Ж., для к-рых имеются довольно полные исследования и описания их статистич. структуры.

Теория кинетич. и динамич. свойств Ж. (диффузии, вязкости и т. д.) разработана менее полно, чем равновесных свойств (теплоёмкости и др.). Динамич. теория жидкого состояния весьма сложна и пока не получила достаточного развития. В теории Ж. большое развитие получили численные методы, позволяющие рассчитывать свойства простых Ж. с помощью быстродействующих вычислительных машин. Наибольший интерес представляет метод молекулярной динамики, непосредственно моделирующий на вычислительной машине совместное тепловое движение большого числа молекул при заданном законе их взаимодействия и по прослеженным траекториям многих отдельных частиц восстанавливающий все необходимые статистич. сведения о системе. Таким путём получены точные теоретич. результаты относительно структуры и термодинамич. свойств простых, неметаллич. Ж. Отдельную и ещё не решённую проблему составляет вопрос о структуре и свойствах простых Ж. в непосредств. окрестности критической точки. Нек-рые успехи были здесь достигнуты в последнее время методами теории подобия. В целом проблема критических явлений для чистых Ж. и смесей остаётся ещё недостаточно выясненной.

Отд. проблему составляет вопрос о структуре и свойствах жидких металлов, на к-рые значительное влияние оказывают имеющиеся в них коллективизированные электроны. Несмотря на некоторые успехи, полной электронной теории жидких металлов ещё не существует. Значительные (пока ещё не преодоленные) трудности встретились при объяснении свойств жидких полупроводников.

Основные направления исследований жидкого состояния. Многочисл. макроскопич. свойства Ж. изучаются и описываются методами различных разделов механики, физики и физ. химии. Равновесные механич. и тепловые свойства Ж. (сжимаемость, теплоёмкость и др.) изучаются термодинамич. методами. Важнейшей задачей является нахождение уравнения состояния для давления и энергии как функции от плотности и темп-ры, а в случае растворов - и от концентраций компонентов. Знание уравнения состояния позволяет методами термодинамики установить многочисл. связи между различными механич. и тепловыми характеристиками Ж. Имеется большое количество эмпирич., полуэмпирич. и приближённых теоретич. уравнений состояния для различных индивидуальных жидкостей и их групп.

Неравновесные тепловые и механич. процессы в Ж. (напр., диффузия, теплопроводность, электропроводность и др.), особенно в смесях и при наличии хим. реакций, изучаются методами термодинамики необратимых процессов.

Механич. движения Ж., рассматриваемых как сплошные среды, изучаются в гидродинамике. Важнейшее значение имеет Навъе - Стокса уравнение, описывающее движение вязкой Ж. У т. н. ньютоновских Ж. (вода, низко-молекулярные органич. Ж., расплавы солей и др.) вязкость не зависит от режима течения (в условиях ламинарного течения, когда Рейнолъдса число R < Rкритич.), в этом случае вязкость является физ.-хим. постоянной, определяемой молекулярной природой Ж. и её состоянием (темп-рой и давлением). Уненьютоновских (структурно-вязких) Ж. вязкость зависит от режима течения даже при малых числах Рейнольдса (жидкие полимеры, стёкла в интервале размягчения, эмульсии и др.). Свойства неньютоновских Ж. изучает реология. Специфич. особенности течения жидких металлов, связанные с их электропроводностью и лёгкой подверженностью влиянию магнитных полей, изучаются в магнитной гидродинамике. Приложения методов гидродинамики к задачам молекулярной физики жидкостей изучаются в физ.-хим. гидродинамике.

Лит.: Френкель Я. И., Собрание избранных трудов, т. 3, М., 1959; Фишер И. 3., Статистическая теория жидкостей, М., 1961; Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, М., 1953; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965; Скрышевский А. Ф., Рентгенография жидкостей, К., 1966; Физика простых жидкостей. Экспериментальные исследования, пер. с англ., М., 1972 [в печати].

И. 3. Фишер.

"ЖИДОВСТВУЮЩИЕ", православно-церковное наименование одной из разновидностей ересей в России во 2-й пол. 15-нач. 16 вв., неупотребляемое в советской ист. науке. См. Ереси в России.

ЖИЖЕРАЗБРАСЫВАТЕЛЬ, прицепная машина для откачки навозной жижи из жижесборников скотных дворов, вывоза её и равномерного розлива по полю. Ж. можно использовать для транспортировки жидких растворов и суспензий ядохимикатов и гербицидов, приготовления торфо-фекальных и др. компостов, подвоза воды и др. полужидких и жидких грузов. Осн. узлы используемой в СССР машины ЗЖВ-1,8 - цистерна, рама с ходовой частью, заборный рукав, напорно-вакуумная магистраль, эжектор, прицеп. Агрегатируют Ж. с тракторами "Беларусь". Цистерну заполняют и опорожняют под действием разрежения и избыточного давления, создаваемых двигателем трактора при помощи эжектора. Ёмкость цистерны 1800 л; ширина полосы разбрызгивания жидкости до 8,5 л; высота подъёма жидкости из заборного рукава до 7 м. Обслуживает Ж. тракторист. Пром-сть СССР выпускает также автожижеразбрасыватель, смонтированный на шасси автомобиля и работающий под действием разрежения и давления, создаваемых двигателем автомобиля, и заправщик-жижеразбрасыватель, представляющий собой одноосный тракторный прицеп с цистерной, заборным рукавом, напорно-вакуумной магистралью, эжектором.



ЖИЖИЯ (Jijia), река в Румынии, прав. приток Прута. Дл. 280 км. Берёт начало в пределах СССР ок. границы с Румынией. На значит. протяжении течёт по Предкарпатской равнине. В низовьях на протяжении 70 км протекает параллельно р. Прут в долине, с обширной заболоченной поймой. Снегово-дождевое питание, весной высокое половодье. Летом сильно мелеет. Несудоходна.

ЖИЖКА (Zizka) Ян (ок. 1360, Троцнов, Юж. Чехия,- 11.10.1424, Пршибислав), деятель гуситского революционного движения, полководец, нац. герой чешского народа. Происходил из среды мелких дворян. Сражался в Грюнвалъдской битве 1410. С начала гуситского революц. движения Ж.- активный его участник. Первой крупной победой, в к-рой проявился полководческий талант Ж., был бой у Судомержа (25 марта 1420). После создания Табора Ж.- один из четырёх его гетманов. Ж. успешно руководил обороной Витковой горы, где решился исход битвы за Прагу (14 июля 1420). Виткова гора впоследствии иногда именовалась Жижковой (в 1950 здесь открыт памятник Ж., скульптор Б. Кафка). С дек. 1420 Ж.- первый гетман таборитов. Поддерживал в Таборе противников хилиазма и способствовал в 1421 расправе умеренной части таборитов с пикартами (см. Пикардство). В нач. янв. 1422 Ж. нанёс крестоносцам решительное поражение у Немецки-Брода; обратил в бегство участников 3-го крестового похода (осень 1422). После размежевания между правым и левым крылом гуситов (1422) Ж. возглавил силы левого таборитского крыла. В 1423 Ж. основал в сев.-вост. Чехии т. н. Оребитское братство левых гуситов с центром в Градец-Кралове (Малый Табор). После смерти Ж. от чумы во время осады г. Пршибислава (близ границы с Моравией) члены этого общества называли себя "сиротами".

Ж. создал хорошо организованное и обученное войско, отличавшееся высокими боевыми качествами и железной дисциплиной, разработал воинский устав, создал, наряду с пехотой и кавалерией, новые рода войск - повозочный и пушкарский. Стратегия Ж. была направленана решительный разгром противника в полевом сражении. Для тактики войск под рук. Ж. характерны смелый манёвр, чёткое взаимодействие родов войск и час