БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101 соединения, их формулы часто дают так: Me[Fe(SO4)2]*12H2O. Железо-аммониевые квасцы применяют в аналитической химии (см. также Квасцы).



ЖЕЛЕЗНЫЕ OХРЫ, рыхлые, порошковатые минеральные скопления, состоящие гл. обр. из дисперсных глинистых частиц и метаколлоидных окислов и гидроокислов железа (гётита и лепидокрокита - FeOOH, гидрогётита - FeOOHX X nН2О, гематита - Fе2О3, гидрогематита- Fе2О3-nН2О). Обычно содержат примеси пылевидного кварца и опала, гидраты окислов алюминия и др. В зависимости от минералогич. состава и суммарного содержания Fе2О3 различают: жёлтые охры (гётит, лепидокрокит, гидрогётит) с содержанием Fе2О3 15-50%; мумии и сурики железные (гематит, гидрогематит) с содержанием Fе2О3 20-80% . Ж. о. образуют мягкие, иногда пластичные скопления, легко растирающиеся в порошок и пачкающие. Плотность в зависимости от состава сильно варьирует (2000- 3500 кг/м3). Образуются за счёт поверхностного окисления и выветривания богатых железистыми минералами (силикатами, карбонатами, сульфидами) горных пород и рудных образований. Ж. о. часто связаны также с накоплением гидроокислов железа при процессах осадкообразования (осадочные морские отложения железных руд и охр, озёрные и болотные железистые осадки и др.). Образуются также в продуктах отложения минеральных источников, при процессах образования зон окисления в колчеданных месторождениях и т. п. В пром-сти, после удаления примесей обломков горных пород и размола до мелких фракций,Ж. о. находят широкое применение как минеральные краски. Г. П. Барсанов.

ЖЕЛЕЗНЫЕ РУДЫ, природные минеральные образования, содержащие железо в таких количествах и соединениях, при к-рых пром. извлечение из них металла экономически целесообразно. Ж. р. разнообразны по минеральному составу, содержанию железа, полезных и вредных примесей, условиям образования и пром. свойствам. Важнейшими рудными минералами являются: магнетит, магномагнетит, титаномагнетит, гематит, гидрогематит, гётит, гидрогётит, сидерит, железистые хлориты (шамозит, тюрингит и др.). Содержание железа в пром. рудах изменяется в широких пределах - от 16 до 70% . Различают богатые (>= 50% Fe), рядовые (50-25% Fe) и бедные (<=25% Fe) Ж. р. В зависимости от хим. состава Ж. р. применяются для выплавки чугуна в естественном виде или после обогащения. Ж. р., содержащие меньше 50% Fe, обогащают (до 60% Fе) гл. обр. методами магнитной сепарации или гравитационного обогащения. Рыхлые и сернистые (>0,3% S) богатые руды, а также концентраты обогащения окусковываются путём агломерации; из концентратов производятся также т. н. окатыши. Ж. р., идущие в доменную шихту, во избежание ухудшения качества стали или условий плавки, не должны содержать более 0,1-0,3% S, P и Си и 0,05-0,09% As, Zn, Sn, Pb. Примесь в Ж. р. Мn, Cr, Ni, Ti, V, Co, кроме нек-рых случаев, полезна. Три первых элемента улучшают качество стали, a Ti, V, Co могут попутно извлекаться при обогащении и металлургич. переделе.

Месторождения Ж. р. по происхождению разделяются на 3 группы - маг-матогенные, экзогенные и метаморфогенные. Среди магматогенных различаются: магматические - дайкообразные, неправильные и пластообразные залежи титаномагнетитов, связанные с габбро-пироксенитовыми породами (Кусинское и Качканарское месторождения на Урале в СССР, месторождения Бушвельдского комплекса в ЮАР, Лиганга в Танзании), и апатито-магнетитовые залежи, связанные с сиенитами и сиенитдиоритами (Лебяжинское на Урале в СССР, Кируна и Елливаре в Швеции); контактово -метасоматические, или скар новые, возникают на контактах или вблизи интрузивных массивов; под воздействием высокотемпературных растворов вмещающие карбонатные и др. породы превращаются в скарны, а также пироксен-альбитовые и скаполитовые породы, в которых обособляются сложные по форме залежи сплошных и вкрапленных магнетитовых руд (в СССР - Соколовское, Сарбайское в Северо-Западном Казахстане, Магнитогорское, Высокогорское и др. на Урале, ряд месторождений в Горной Шории; Айрон-Спрингс в США и др.); гидротермальные образуются при участии горячих минерализованных растворов, путём отложения Ж. р. по трещинам и зонам смятия, а также при метасоматич. замещении боковых пород; к этому типу относятся Коршуновское и Рудногорское магномагнетитовые месторождения Вост. Сибири, гидрогётит-сидеритовое Абаильское в Ср. Азии, сидеритовые месторождения Бильбао в Испании и др.

К экзогенным месторождениям относятся: осадочные - химические и механические осадки морских и озёрных бассейнов, реже в долинах и дельтах рек, возникающие при местном обогащении вод бассейна соединениями железа и при сносе в них железистых продуктов прилегающей суши; слагают пласты или линзы среди осадочных, иногда - вулканогенно-осадочных пород; к этому типу относятся месторождения бурых железняков, частью сидеритов, силикатных руд (в СССР - Керченское в Крыму, Аятское - Каз. ССР; в ФРГ - Лан-Диль и др.); месторождения коры выветривания образуются в результате выветривания горных пород с железосодержащими породообразующими минералами; различают остаточные, или элювиальные, месторождения, когда продукты выветривания, обогащённые железом (вследствие выноса из породы др. составных частей), остаются на месте (тела богатых гематито-мартитовых руд Кривого Рога, Курской магнитной аномалии, района оз. Верхнего в США и др.), и инфильтрационные (цементационные), когда железо вынесено из выветривающихся пород и переотложено в нижележащих горизонтах (Алапаевское месторождение на Урале и др.).

Метаморфогенные (метаморфизованные) месторождения- преобразованные в условиях высоких давлений и темп-р ранее существовавшие, преимущественно осадочные, месторождения. Гидроокислы железа и сидериты переходят при этом обычно в гематит и магнетит. Метаморфические процессы иногда дополняются гидротермально-метасоматическим образованием магнетитовых руд. К этому типу относятся месторождения железистых кварцитов Кривого Рога, Курской магнитной аномалии, месторождения Кольского п-ова, железорудной провинции Хамерсли (Австралия), п-ова Лабрадор (Канада), шт. Минас-Жерайс (Бразилия), шт. Майсур (Индия) и пр.

Осн. пром. типы Ж. р. классифицируются по преобладающему рудному минералу. Бурые железняки. Рудные минералы представлены гидроокислами железа, больше всего гидрогетитом. Такие руды обычны в осадочных месторождениях и месторождениях коры выветривания. Сложение плотное или рыхлое; осадочные руды часто имеют оолитовую текстуру. Содержание Fe колеблется от 55 до 30% и менее. Обычно требуют обогащения. Т. н. самоплавкие бурые железняки, в к-рых Sio+Al2O3 близко к единице, идут СаО + МgО в плавку при содержании Fe до 30% (Лотарингия). В бурых железняках нек-рых месторождений находится до 1-1,5% и более Мп (Бильбао в Испании, Бакальское в СССР). Важное значение имеют комплексные хромо-никелевые бурые железняки; при наличии 32-48% Fe в них нередко содержится также до 1% Ni, до 2% Сr, сотые доли процента Со, иногда V. Из таких руд могут без добавок выплавляться хромо-никелевые чугуны и низколегированная сталь. Красные железняки, или гематитовые руды. Осн. рудным минералом является гематит.

Представлены гл. обр. в коре выветривания (зона окисления) железистых кварцитов и скарновых магнетитовых руд. Такие руды часто называют мартитовыми (мартит - псевдоморфозы гематита по магнетиту). Среднее содержание Fe от 51 до 60%, иногда выше, с незначительными примесями S и Р. Известны месторождения гематитовых руд с присутствием в них до 15-18% Мn. Менее развиты гидротермальные месторождения гематитовых руд. Магнитные железняки, или магнетитовые руды. Рудный минерал - магнетит (иногда магнезиальный), нередко мартитизированный. Наиболее характерны для месторождений контактово-метасоматического типа, связанных с известковыми и магнезиальными скарнами. Наряду с богатыми массивными рудами (50- 60% Fe) распространены вкрапленные руды, содержащие менее 50% Fe. Известны месторождения руд с присутствием ценных примесей, в частности Со, Мп. Вредные примеси - сульфидная сера, Р, иногда Zn, As. Особую разновидность магнетитовых руд представляют титаномагнетитовые руды, являющиеся комплексными железо-титано-ванадиевыми. Важное пром. значение приобретают вкрапленные титаномагнетитовые руды, являющиеся по существу осн. интрузивными породами с повышенным содержанием породообразующего титаномагнетита. В них обычно присутствует 16-18% Fe, но они легко обогащаются магнитной сепарацией (Кач-канарское месторождение на Урале и др.). Сидеритовые руды (шпатовые железняки) разделяются на кристаллич. сидеритовые руды и глинистые шпатовые железняки. Среднее содержание Fe 30- 35% .

После обжига, в результате удаления СО2, сидеритовые руды превращаются в пром. ценные тонкопористые железо-окисные (обычно содержат до 1-2% Мп, иногда до 10%). В зоне окисления сидеритовые руды превращаются в бурые железняки. Силикатные железные руды. Рудными минералами в них являются железистые хлориты, обычно сопровождающиеся гидроокислами железа, иногда сидеритом (Fe 25- 40%). Примесь S незначительна, Р до 0,9-1%. Силикатные руды слагают пласты и линзы в рыхлых осадочных породах. Часто обладают оолитовой текстурой. В коре выветривания превращаются в бурые, частью красные железняки. Железистые кварциты (джеспилиты, железистые роговики) - бедные и средние (12-36% Fe) докембрийские метаморфизованные Ж. р., сложенные тонкими чередующимися кварцевыми, магнетитовыми, гематитовыми, магнетит-гематитовыми прослоями, местами с примесью силикатов и карбонатов. В железистых кварцитах мало примесей S, Р. Залежи железистых кварцитов обычно обладают крупными запасами металла. Их обогащение, в особенности магнетитовых разностей, даёт вполне рентабельный концентрат с содержанием 62-68% Fe. В коре выветривания кварц из железистых кварцитов выносится, и возникают крупные залежи богатых гематито-мартитовых руд.

Большая часть Ж. р. используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах служат природными красками (охры) и утяжелителями буровых глинистых растворов. Требования пром-сти к качеству и свойствам Ж. р. разнообразны. Так, для выплавки нек-рых литейных чугунов применяются Ж. р. с большой примесью Р (до 0,3- 0,4%). Для плавки мартеновских чугунов (гл. продукта доменного произ-ва), при плавке на коксе содержание S в руде, вводимой в домну, не должно превышать 0,15%. Для произ-ва чугунов, идущих в мартеновский передел кислым способом, Ж. р. должны быть особо малосернистыми и малофосфористыми; для передела осн. способом в качающихся мартенах допускается несколько более повышенная примесь в руде Р, но не выше 1,0-1,5% (в зависимости от содержания Fe). Томасовские чугуны плавятся из фосфористых Ж. р. с повышенным количеством Fe. При выплавке чугунов любого типа содержание Zn в Ж. р. не должно превышать 0,05%. Руда, используемая в домне без предварит. спекания, должна быть механически достаточно прочной. Т. н. мартеновские руды, вводимые в шихту, должны быть кусковыми и иметь высокое содержание Fe при отсутствии примесей S и Р. Обычно таким требованиям удовлетворяют плотные богатые мартитовые руды. Магнетитовые руды с содержанием до 0,3-0,5% Си используются для получения сталей с повышенной устойчивостью против коррозии.

В мировой добыче и переработке Ж. р. различных пром. типов отчётливо проявляется тенденция значит. увеличения добычи бедных, но хорошо обогащающихся руд, в особенности магнетитовых железистых кварцитов, в меньшей мере вкрапленных титано-магнетитовых руд. Рентабельность использования таких руд достигается крупными масштабами горнообогатит. предприятий, совершенствованием техники обогащения и окускования получаемых концентратов, в частности получения т. н. окатышей. Вместе с тем сохраняет актуальность задачи увеличения ресурсов Ж. р., не требующих обогащения.

Лит.: Железорудная база черной металлургии СССР, М., 1957; Требования промышленности к качеству минерального сырья. Справочник для геологов, в. 59- Железо, 2 изд., М., 1962; Обзор минеральных ресурсов стран капиталистического мира, [Годовой обзор]. М., 1968. Г. А. Соколов.

ЖЕЛЕЗНЫЕ СПЛАВЫ, металлич. системы, одним из компонентов к-рых (как правило, преобладающим) служит железо. Ж. с. содержат обычно примеси (марганец, кремний, серу, фосфор и др.), а также легирующие элементы.

Важнейшими Ж. с., наиболее часто применяемыми в технике, являются железоуглеродистые сплавы (сталь, чугун). К Ж. с. относятся также спец. сплавы на железной основе (с высоким электрич. сопротивлением, магнитные, жаропрочные и др.) и ферросплавы. На долю Ж. с. приходится ок. 95% всей металлич. продукции.



ЖЕЛЕЗНЫЙ БЛЕСК, минерал, кристаллич. разновидность гематита с металлич. блеском.



ЖЕЛЕЗНЫЙ ВЕК, эпоха в первобытной и раннеклассовой истории человечества, характеризующаяся распространением металлургии железа и изготовлением жел. орудий. Представление о трёх веках: каменном, бронзовом и железном - возникло ещё в античном мире (Тит Лукреций Кар). Термин "Ж. в." был введён в науку ок. сер. 19 в. датским археологом К. Ю. Томсеном. Важнейшие исследования, первонач. классификация и датировка памятников Ж. в. в Западной Европе сделаны австр. учёным М. Гёрнесом, швед.- О. Монтелиусом и О. Обергом, нем.- О. Тишлером и П. Рейнеке, франц.- Ж. Дешелетом, чешек.- Й. Пичем и польск.- Ю. Костшевским; в Вост. Европе - рус. и сов. учёными В. А. Городцовым, А. А. Спицыным, Ю. В. Готье, П. Н. Третьяковым, А. П. Смирновым, X. А. Моора, М. И. Артамоновым, Б. Н. Граковым и др.; в Сибири - С. А. Теплоуховым, С. В. Киселёвым, С. И. Руденко и др.; на Кавказе- Б. А. Куфтиным, А. А. Иессеном, Б. Б. Пиотровским, Е. И. Коупновым и др.; в Ср. Азии - С. П. Толстовым, А. Н. Бернштамом, А. И. Тереножкиным и др.

Период первонач. распространения жел. индустрии пережили все страны в разное время, однако к Ж. в. обычно относят только культуры первобытных племён, обитавших вне территорий древних рабовладельч. цивилизаций, возникших ещё в эпоху энеолита и бронзы (Месопотамия, Египет, Греция, Индия, Китай и др.). Ж. в. сравнительно с предыдущими археологич. эпохами (кам. и бронз. веками) очень короток. Его хронологич. границы: от 9-7 вв. до н. э., когда у многих первобытных племён Европы и Азии получила развитие собств. металлургия железа, и до времени возникновения у этих племён классового общества и гос-ва. Нек-рые совр. зарубежные учёные, считающие концом первобытной истории время появления письм. источников, относят конец Ж. в. Зап. Европы к 1 в. до н. э., когда появляются рим. письм. источники, содержащие сведения о зап.-европ. племенах. Поскольку и поныне железо остаётся важнейшим металлом, из сплавов к-рого изготовляются орудия труда, для археологич. периодизации первобытной истории применяется также термин "ранний Ж. в.". На терр. Зап. Европы ранним Ж. в. называется лишь его начало (т. н. галъштатская культура).

Первоначально человечеству стало известно метеоритное железо. Отдельные предметы из железа (гл. обр. украшения) 1-й пол. 3-го тыс. до н. э. найдены в Египте, Месопотамии и М. Азии. Способ получения железа из руды был открыт во 2-м тыс. до н. э. Согласно одному из наиболее вероятных предположений, сыродутный процесс (см. ниже) был впервые применён подчинёнными хеттам племенами, жившими в горах Армении (Антитавр) в 15 в. до н