БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101 - на наблюдении поглощения волн, проходящих через диэлектрик. В случае газов, к-рые имеют е~~1 и малые диэлектрич. потери, Е и tgб определяют с помощью установки, схематически изображённой на рис. 3. В среднем участке волновода, отгороженном слюдяными окнами, создаётся вакуум, а затем туда вводится газ. При этом в согласии с формулой (5) длина волны уменьшается и положение минимумов стоячей волны смещается. Д. и. жидкостей и твёрдых тел, имеющих е не= 1, осложняются отражением волн на границе воздух - диэлектрик. В этих условиях наблюдают картину стоячих волн на входе заполненного диэлектриком волновода с помощью измерительной линии. В области миллиметровых, инфракрасных и световых волн измеряют коэфф. отражения или преломления и коэфф. поглощения диэлектрика, откуда находят е и tgб.

Методы измерения удельной электропроводности диэлектриков а в постоянном поле существенно не отличаются от аналогичных методов для металлов и полупроводников. Для точных измерений очень малых а используют постоянного тока усилитель.

Измерения электрич. прочности Епр основаны на измерении напряжения Епp, к-рое соответствует наступлению диэлектрич. пробоя:
[825-22.jpg]

где d - расстояние между электродами. Лит.: Сканави Г. И., Диэлектрическая поляризация и потери в стеклах и керамических материалах с высокой диэлектрической проницаемостью, М. - Л., 1952; Карандеев К. Б., Мостовые методы измерений, К., 1953; Xиппель А. Р., Диэлектрики и их применение, пер. с англ., М. -Л., 1959; Браун В., Диэлектрики, пер. с англ., М., 1961; Измерения на сверхвысоких частотах, пер. с англ., под ред. В. Б. Штейншлейгера, М., 1952.

А. Н. Губкин.

ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ, часть энергии переменного электрич. поля в диэлектрич. среде, к-рая переходит в тепло. При изменении значения и направления напряжённости Е электрич. поля диэлектрич. поляризация также меняет величину и направление (см. Диэлектрики); за время одного периода переменного поля поляризация дважды устанавливается и дважды исчезает. Если диэлектрик построен из молекул, к-рые представляют собой диполи (полярные молеку-л ы) или содержит слабо связанные ионы, то ориентация таких частиц или смещение в электрич. поле (ориентационная поляризация) требуют определённого времени (время релаксации). В результате максимум поляризации не совпадает во времени с максимумом напряжённости поля, т. е. имеется сдвиг фаз между напряжённостью поля и поляризацией. Благодаря этому имеется также сдвиг фаз между напряжённостью электрического поля Е и электрич. индукцией D, к-рый и обусловливает потери энергии We. Переходя к векторному изображению величин, можно сказать, что вектор электрич. индукции отстаёт' от вектора электрич. поля на нек-рый угол 6, к-рый носит назв. угла диэлектрических потерь. Когда молекулы или ионы ориентируются полем, они испытывают соударения с др. частицами, при этом рассеивается энергия. Если время релаксации г во много раз больше, чем период Т изменения приложенного поля, то поляризация почти не успевает развиться и Д. п. очень малы. При малых частотах, когда время релаксации т значительно меньше периода Т, поляризация следует за полем и Д. п. также малы, т. к. мало число переориентации в единицу времени. Д. п. имеют макс. значение, когда выполняется равенство w = l/t, где w - круговая

[825-23.jpg]

Описанный механизм релаксац. Д. п. имеет место в твёрдых и жидких диэлектриках, содержащих полярные молекулы или слабо связанные ионы. Величина релаксационных Д. п. в жидкости зависит от её вязкости, от темп-ры и от частоты приложенного поля. Для невязких жидкостей (вода, спирт) эти потери проявляются в сантиметровом диапазоне длин волн. В полимерах, содержащих полярные группы, возможна ориентация как отдельных полярных радикалов, так и более или менее длинных цепочек молекул.

В диэлектриках с ионной и электронной поляризацией вещество можно рассматривать как совокупность осцилляторов, к-рые в переменном электрич. поле испытывают вынужденные колебания, сопровождающиеся рассеянием энергии (рис. 1). Однако если частота электрич. поля гораздо больше или меньше собственной частоты осцилляторов, то рассеяние

[825-24.jpg]

Рис. 1. Модель диэлектрика, состоящего из осцилляторов - упруго связанных электрических зарядов.

энергии и, следовательно, Д. п. незначительны. При частотах, сравнимых с собственной частотой осцилляторов, рассеяние энергии и Д. п. We велики и имеют максимум при равенстве этих частот со = w0 (рис. 2). При электронной поляризации максимум потерь соответствует оптич. диапазону частот. В диэлектриках, построенных из ионов (напр., щёлочно-га-лоидные кристаллы), поляризация обусловлена упругим смещением ионов и максимум потерь имеет место в инфракрасном диапазоне частот (1012-1013 гц).
[825-25.jpg]

Рис. 2. Зависимость We(w) для диэлектрика, состоящего из одинаковых осцилляторов, изображённых на рис. 1.

Т. к. реальные диэлектрики обладают нек-рой электропроводностью, то имеются потери энергии, связанные с протеканием в них электрич. тока (джоулевы потери), величина к-рых не зависит от частоты.

Величина Д. п. в диэлектрике, находящемся между обкладками конденсатора, определяется соотношением:
[825-26.jpg]

где U - напряжение на обкладках конденсатора, С - ёмкость конденсатора, tgS - тангенс угла диэлектрических потерь. Д. п. в 1 см3 диэлектрика в однородном поле Е равны:
[825-27.jpg]

где Е - диэлектрическая проницаемость.

Произведение Е tg б наз. коэфф. Д. п. Уменьшение величины Д. п. имеет большое значение в производстве конденсаторов и электроизоляционной технике. Большие Д. п. используются для диэлектрического нагрева в электрич. поле высокой частоты.

Лит.: Сканави Г. И., Физика диэлектриков (Область слабых полей), М. -Л., 1949; Браун В., Диэлектрики, пер. с англ., М., 1961; Хиппель А. Р., Диэлектрики и их применение, пер. с англ., М., 1959; физический энциклопедический словарь, т. 1, М., 1960, с. 643. Е. А. Конорова.

ДИЭЛЕКТРИЧЕСКИЙ ВОЛНОВОД, радиоволновод, состоящий целиком из диэлектрич. материалов (полиэтилена, полистирола и др.).

ДИЭЛЕКТРИЧЕСКИЙ НАГРЕВ, нагрев диэлектриков в переменном электрич. поле. При наложении переменного электрич. поля в диэлектриках появляется ток смещения, вызванный их поляризацией, и ток проводимости, обусловленный наличием в диэлектрике свободных электрически заряженных частиц. Протекание суммарного тока приводит к выделению тепла. Выделяющаяся удельная мощность пропорциональна напряжённости (Е) и частоте (f) электрич. поля, а также диэлектрич. постоянной (Е) и тангенсу угла потерь (tg б) диэлектрика. При частотах 0,3-300 Мгц Д. н. осуществляется в поле конденсатора (источник энергии - ламповые генераторы), при сверхвысоких частотах - в поле объёмного резонатора или излучателя (источник -магнетроны). Напряжённость электрич. поля в промышленных установках Д. н. 5-3000 кв/м. Достоинства установок Д. н.: высокая скорость нагрева; равномерный нагрев материалов с низкой теплопроводностью; осуществление местного и избирательного нагрева и др. Области применения Д. н. - сушка материалов (древесины, бумаги, керамики и др.); нагрев пластмасс перед прессованием; сварка пластмасс; склеивание древесины и т. д.

Лит.: Высокочастотный нагрев диэлектриков и полупроводников, 2 изд., М. -Л., 1959; Высокочастотная электротермия. Справочник, М. -Л., 1965; Брицын Н. Л., Нагрев в электрическом поле высокой частоты, 3 изд., М. -Л., 1965. А. Б. Кувалдин.

ДИЭЛЕКТРИЧЕСКИЙ УСИЛИТЕЛЬ, усилитель электрич. колебаний, в к-ром усиление создаётся изменением ёмкости конденсатора с сегнетоэлектриком при изменении подводимого к нему напряжения. В типовом каскаде усиления Д. у. (рис.) подводимые электрич. колебания изменяют ёмкость конденсатора С и, следовательно, его реактивное сопротивление, что вызывает модуляцию колебаний, создаваемых генератором Г. Полученные на концах сопротивления нагрузки Z, модулированные колебания затем детектируются диодом D. В результате детектирования на выходе Д. у. возникают колебания, совпадающие по форме с подводимыми, но большей амплитуды.

[825-28.jpg]

Схема каскада усиления диэлектрического усилителя: Uвх- подводимое напряжение сигнала; Др-высокочастотный дроссель, защищающий источник усиливаемого сигнала от проникновения в него высокочастотных колебаний генератора Г; Е0 - источник постоянного напряжения для установления рабочего режима на конденсаторе С; С - конденсатор с сегнетоэлектриком; Г-генератор высокочастотных колебаний; ZH - сопротивление нагрузки; - D - диод; Uвых - усиленное выходное напряжение сигнала.

Часто в каскаде усиления Д. у. конденсаторы с сегнетоэлектриком включаются по схеме электрич. моста. Усиление по мощности низкочастотных (сотни гц - десятки кгц) электрич. колебаний, даваемое одним каскадом Д. у., достигает 100. U повышением частоты (до неск. Мгц) усиление существенно уменьшается (до 10 и менее). Для получения большего усиления в Д. у., как в ламповых и транзисторных усилителях, отд. каскады усиления могут быть включены один за другим. Д. у., аналогично магнитному усилителю, с к-рым он сходен по принципу действия, применяют гл. обр. для усиления низкочастотных колебаний в устройствах автоматики, сигнализации и т. п.

ДИЭТИЛЕНГЛИКОЛЬ, В,В' -диоксиди-этиловыйэфир, НОСН2СН2ОСН2СН2ОН, густая бесцветная жидкость; tпл-8°С, tкип 245°С, плотность 1,1197 г/см3(15°С), показатель преломления n20D 1,4472. Д. смешивается с водой, спиртом, ацетоном, плохо растворим в эфире, бензоле; его химические свойства сходны со свойствами этиленгликоля. Последний вместе с окисью этилена

[825-29.jpg]

и этиленхлоргидрином (С1СН2СН2ОН) служит сырьём для пром. получения Д. Д. широко применяют как растворитель нитроцеллюлозы, масел, смол, как пластификатор, компонент антифризов и поглотительных смесей, как осушитель (в газовой пром-сти) и т. д. Практич. значение имеют нек-рые производные Д.: диэтиленгликольдинитрат, моноэфиры (карбитолы) и диэфиры (напр., диглим, СН3ОСН2СН2ОСН2СН2ОСН3).

ДИЭТИЛЕНГЛИКОЛЬДИНИТРАТ, дигликольдинитрат, нитродигликоль,

[825-30.jpg]

вторичное взрывчатое вещество, бесцветная сиропообразная жидкость, плотность 1390 кг/л3; кристаллизуется в двух модификациях: стабильной с t3атв 2°С и лабильной с t3атв -10,9°С. Д. почти нерастворим в воде, хорошо растворяется в ацетоне, метаноле, нитро-гликоле и нитроглицерине, пластифицирует нитроцеллюлозу. Теплота взрыва (~4,18Мдж/кг) близка к теплоте взрыва тротила. Получают этерификацией диэти-ленгликоля смесью серной и азотной к-т. Применяется в смеси с нитроглицерином для изготовления динамитов, баллистит-ных порохов (см. Баллиститы) и др. взрывчатых веществ. Б. Н. Кондриков.

ДИЭТИЛСТИЛЬБЭСТРОЛ, синтетический лекарственный препарат из группы гормональных препаратов (женских половых гормонов). Применяют внутрь в таблетках и в масляном растворе внутримышечно при недостаточной функции яичников и др.

ДИЯЛА, Диала, река в Ираке (истоки составляющих в Иране), лев. приток Тигра. Дл. 231 км (от слияния составляющих Сирван и Эльвенд), пл. басс. св. 30 тыс. км2. Верховья - в горах Загрос, низовья - на Месопотамской низм., где Д. образует обширную плодородную дельту. Весеннее половодье, летняя межень, повышенная водность зимой. Ср. годовой расход воды в низовьях -130 м3/сек. Воды широко используются для орошений.

ДИЯРБАКЫР (Diyarbakir), город на Ю.-В. Турции, на р. Тигр; адм. ц. вилайета Диярбакыр. 138,7 тыс. жит. (1970).
[825-31.jpg]

Ж.-д. станция. Узел шоссейных дорог. Предприятия пищ. и текст, пром-сти. Автосборка. Ремёсла (изготовление тканей, сафьяна). К С.-З. от Д. - добыча хромовой и медной руд.

ДЛИНА, числовая характеристика протяжённости линий. В разных случаях понятие Д. определяется различно. 1) Д. отрезка прямой - расстояние между его концами, измеренное к.-л. отрезком, принятым за единицу Д. 2) Д. ломаной -сумма Д. её звеньев. 3) Д. простой дуги -предел Д. вписанных в эту дугу ломаных, когда число звеньев неограниченно увеличивается и макс. Д. звеньев стремится к нулю. 4) Д. непрерывной кривой, состоящей из конечного числа простых дуг, равна сумме Д. этих дуг. Напр., Д. окружности может. быть получена как предел периметров правильных вписанных многоугольников при неограниченном удвоении числа их сторон и равна 2пR, где R - радиус окружности. Всякая непрерывная кривая имеет Д. - конечную или бесконечную. Если её Д. конечна, то кривая наз. спрямляемой. График функции (см. рис.)
[825-32.jpg]

даёт пример неспрямляемой кривой; здесь Д. вписанных ломаных неограниченно растут, когда Д. звеньев стремятся к нулю. Если уравнение плоской кривой в прямоугольных координатах имеет вид у = = f(x) (а =[825-33.jpg]

Аналогично выражается Д. кривой, заданной параметрически, и Д. пространственной кривой.

К вычислению Д. кривой при помощи предельного перехода из Д. ломаных прибегали по существу ещё математики древности. Для них, однако, этот предельный переход был лишь способом вычисления Д. кривой, а не определения понятия Д. кривой, т. к. последнее им представлялось,по-видимому, одним из первоначальных математич. понятий. Необходимость определения Д. кривой стала ясной лишь в 1-й пол. 19 в. Полное выяснение вопроса было достигнуто К. Жорданом. В дифференциальной геометрии определяется также Д. кривой на поверхности или в произвольном римановом пространстве. О единицах и технике измерения Д. см. Меры, длины, Измерение.

Лит.: Лебег А., Об измерении величин, пер. с франц., 2 изд., М., 1960; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969. С.Б.Стечкин.

ДЛИНА ВОЛНЫ, расстояние между двумя ближайшими точками волны, находящимися в одинаковой фазе колебания. Д. в. \ связана с периодом колебания Т и скоростью с распространения волны соотношением X = сТ.

ДЛИНА СВОБОДНОГО ПРОБЕГА (точнее - средняя длина свободного пробега, l), средняя длина пути, проходимого частицей между двумя последоват. соударениями с др. частицами. Понятием Д. с. п. широко пользуются при расчётах различных процессов переноса, напр, вязкости, теплопроводности, диффузии, электропроводности и др.

Согласно кинетич. теории газов, молекулы от столкновения до столкновения движутся равномерно и прямолинейно. Если за 1 сек молекула проходит в среднем путь v, испытывая при этом v упругих соударений с такими же молекулами, то
[825-34.jpg]

где п - число молекул в единице объема (плотность газа), а - эффективное поперечное сечение молекулы. С повышением плотности газа (его давления) Д. с. п. уменьшается, т. к. растёт число столкновений v в 1 сек. Повышение темп-ры (интенсивности движения молекул) приводит к нек-рому уменьшению о и, следовательно, к росту l. Для обычных молекулярных газов в нормальных условиях (при атм. давлении и 20°С) l ~ ~ 10-5 см, что примерно в 100 раз больше ср. расстояния между молекулами. К частицам, движение и взаимодействие к-рых подчиняется законам квантовой механики, понятие Д. с. п. в ряде случаев та