БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101R>
Рис. 3. Рис. 4.

Начало координат (х = 0, у = 0) - особая точка данного уравнения. Интегральными кривыми уравнения ydx - xdy = 0, изображёнными на рис. 4, являются всевозможные прямолинейные лучи, выходящие из начала координат; начало координат является особой точкой и этого ур-ния.

Начальные условия. Геом. интерпретация Д. у. 1-го порядка приводит к мысли, что через каждую внутр. точку М области G с заданным непрерывным полем направлений можно провести одну вполне определённую интегральную кривую.

В отношении существования интегральной кривой сформулированная гипотеза оказывается правильной. Доказательство этого предложения принадлежит Дж. Пеано. В отношении же единственности интегральной кривой, проходящей через заданную точку, высказанная выше гипотеза оказывается, вообще говоря, ошибочной. Уже для такого простого ур-ния, как
[824-21.jpg]

у к-рого правая часть непрерывна во всей плоскости, интегральные кривые имеют вид, изображённый на рис. 5. Единственность интегральной кривой, проходящей через заданную точку, нарушается здесь во всех точках оси Ох.
[824-22.jpg]

Рис. 5.

Единственность, т. е. однозначное определение интегральной кривой условием её прохождения через заданную точку, имеет место для ур-ний (Б) с непрерывной правой частью при том дополнительном условии, что функция f (x,y) имеет в рассматриваемой области ограниченную производную по у.

Это требование является частным случаем следующего, несколько более широкого условия Липшица: существует такая постоянная L, что в рассматриваемой области всегда |f(x, у1)-f(x, у2)|
С аналитич. стороны теоремы существования и единственности для уравнения вида (Б) обозначают следующее: если выполнены надлежащие условия [напр., функция f (x, у) непрерывна и имеет ограниченную производную по у], то задание для "начального" значения Хо независимого переменного х "начального" значения у0 = у (х0) функции у(х) выделяет из семейства всех решений у(х) одно определённое решение. Напр., если для рассмотренного выше уравнения (1) потребовать, чтобы в начальный момент времени t0 = 0 темп-pa тела была равна "начальному" значению Т0, то из бесконечного семейства решений (2) выделится одно определённое решение, удовлетворяющее заданным начальным условиям: T(t) = T0e-kT.

Этот пример типичен: в механике и физике Д. у. обычно определяют общие законы течения к.-л. явления; однако, чтобы получить из этих законов определённые количеств, результаты, надо присоединить к ним сведения о начальном состоянии изучаемой физ. системы в нек-рый определённый выбранный в качестве "начального" момент времени t0.

Если условия единственности выполнены, то решение у(х), удовлетворяющее условию у(х0) = y0, можно записать в виде:
y(x) = ф(x; х0, y0), (5)

где х0 и y0 входят как параметры, функция же ф (х; х0, y0) трёх переменных х, х0 и y0 однозначно определяется самим уравнением (Б). Важно отметить, что при достаточно малом изменении поля (правой части Д. у.) функция Ф (х; х0, y0) меняется сколь угодно мало на конечном промежутке изменения переменного х - имеется непрерывная зависимость решения от правой части Д. у. Если правая часть f(x, у) Д. у. непрерывна и её производная по у ограничена (или удовлетворяет условию Липшица), то имеет место также непрерывность ф (х; xо, у0) по х0 y0.

Если в окрестности точки (ха, у0) для уравнения (Б) выполнены условия единственности, то все интегральные кривые, проходящие через достаточно малую окрестность точки (х0, у0), пересекают вертикальную прямую х = х0 и определяются ординатой у = С своей точки пересечения с этой прямой (см. рис. 6). Т. о., все эти решения содержатся в семействе с одним параметром С: y(x) = F(x,C), к-рое является общим решением Д- у. (Б).

[824-23.jpg]

Рис. 6.

В окрестности точек, в к-рых нарушаются условия единственности, картина может быть сложнее. Весьма сложен и вопрос о поведении интегральных кривых "в целом", а не в окрестности точки (х0, у о).

Общий интеграл. Особые решения. Естественно поставить обратную задачу: задано семейство кривых, зависящих от параметра С, требуется найти Д. у., для к-рого кривые заданного семейства служили бы интегральными кривыми. Общий метод для решения этой задачи заключается в следующем: считая семейство кривых на плоскости хОу заданным при помощи соотношения F(x,y,C) = 0, (6) дифференцируют (6) при постоянном С и получают

[824-24.jpg]

и из двух уравнений (6) и (7) или (6) и (8) исключают параметр С. Если данное Д. у. получается таким образом из соотношения (6), то это соотношение наз. общим интегралом заданного Д. у. Одно и то же Д. у. может иметь много различных общих интегралов. После нахождения для заданного Д. у. общего интеграла оказывается необходимым, вообще говоря, ещё исследовать, не имеет ли Д. у. дополнительных решений, не содержащихся в семействе интегральных кривых (6).

Пусть, напр., задано семейство кривых (x-С)3-y= 0. (9)

Дифференцируя (9) при постоянном С, получают 3(x-С)2-y' = 0, после же исключения С приходят к Д у 27y2-(y)3 = 0, (10) равносильному ур-нию (4). Легко ви-Деть, что, кроме решений (9), ур-ние (10) имеет решение y= 0. (11) Решение уравнения (10) самого общего вида таково:

[824-25.jpg]

где - БЕСКОНЕЧНОСТЬ =[824-26.jpg]

Рис. 7.

Решение (11) уравнения (10) может служить примером особого решения Д. у. В качестве другого примера можно рассмотреть семейство прямых 4(y-Сx) + С2 = 0. (12) Эти прямые являются интегральными кривыми Д. у. 4(у-ху') + (у') = 0.

Особой же интегральной кривой этого Д. у. служит парабола x2-y=0 огибающая прямые (12) (рис. 8). Картина, наблюдавшаяся в рассмотренном примере, типична; особые интегральные кривые обычно являются огибающими семейства интегральных кривых, получаемых из общего решения.

[824-27.jpg]

Рис. 8.

Дифференциальные у р-ния высших порядков и системы дифференциальных у р-ний. Д. у. и-го порядка с одной неизвестной функцией у(х) независимого переменного х записывают так: F(x,y, y', у", ... , y(n-1), yn) = 0.(13) Если ввести дополнительные неизвестные функции
y1 = y', y2 = y",..., yn-1 = yn-1, (14) то уравнение (13) можно заменить системой из п уравнений с п неизвестными функциями, но зато 1-го порядка. Для этого достаточно к п-1 ур-ниям (14) присоединить ур-ние F(x, у, y1, y2,..., yn-1, yn-1') = 0.

Аналогичным образом сводятся к системам ур-ний 1-го порядка и системы ур-ний высших порядков. В механике сведение систем ур-ний 2-го порядка к системе из удвоенного числа ур-ний 1-го порядка имеет простой механич. смысл. Напр., система трёх ур-ний движения материальной точки тх" = р(х, у, z), my" = Q(x, у, z), mz" = R(x, у, z), где х, у, z - координаты точки, зависящие от времени t, сводится к системе шести ур-ний: ти'=р(х, у, z), mv' = Q(x, у, z), mw' = R(x, у, z), и = х', v = y', w = z' при помощи введения в качестве новых переменных составляющих и, v, w скорости.

Наибольшее значение имеют системы, в к-рых число ур-ний равно числу неизвестных функций. Система из п ур-ний 1-го порядка с п неизвестными функциями, разрешённая относительно производных, имеет вид:
[824-28.jpg]

Решением системы Д. у. (а) наз. система функций xt(t), *2(t),..., xn(t), к-рая при подстановке в уравнения (а) обращает их в тождества. Часто встречаются системы вида (а), в к-рых правые части не зависят от f. В этом случае изучение системы (а) в основном сводится к изучению системы из (и - 1)-го уравнения, к-рую целесообразно записывать в симметричной форме
[824-29.jpg]
не предрешая вопроса о том, от какого из переменных х1, х2, ...,хп мыслятся зависящими остающиеся п - 1 переменных. Считая х = (х1, х2, ..., хп) вектором, можно записать систему (а) в виде одного векторного ур-ния:
[824-30.jpg]
что позволяет широко пользоваться при изучении систем (а) аналогией с теорией одного ур-ния 1-го порядка вида (Б). В частности, оказывается, что для систем (а) сохраняют силу основные результаты относительно существования и единственности решения задачи с начальными условиями: если в окрестности точки (t0, х01 , х02 ,..., х0n ) все функции F1 непрерывны по совокупности переменных t, x1, х2, ..., хп и имеют ограниченные производные по переменным x1, x2, ..., хп, то задание начальных значений xi (to) = х0i, i = 1,2,..., п, определяет одно, вполне определённое, решение системы (а). Этим объясняется то, что, вообще говоря, решение систем из п уравнений 1-го порядка с п неизвестными функциями зависит от п параметров.

Для приведённых выше конкретных примеров Д. у. их общее решение удаётся выразить при помощи элементарных функций. Типы Д. у., допускающие такого рода решение, детально изучаются. Часто придерживаются более общей точки зрения, считая Д. у. "решённым", если искомая зависимость между переменными (и входящими в общее решение параметрами C1, С2,...) может быть выражена при помощи элементарных функций и одной или нескольких операций взятия неопределённого интеграла ("решение выражено в квадратурах").

Большой общностью обладают способы нахождения решений при помощи разложения их в степенные ряды. Напр., если правые части ур-ний (а) в окрестности точки (t0, х01 , х02 ,..., х0n ) голоморфны (см. Аналитические функции), то решение соответствующей начальной задачи выражается функциями xi (t), разлагающимися в степенные ряды:
[824-31.jpg]

коэффициенты к-рых можно найти последовательным дифференцированием правых частей Д. у. (а) и сопоставлением коэффициентов при одинаковых степенях в левых и правых частях этих ур-ний.

Из специальных типов Д. у. особенно хорошо разработана теория линейных Д. у. и систем линейных Д. у. (см. Линейные дифференциальные уравнения).

Для линейных Д. у. сравнительно просто решаются также вопросы "качественного" поведения интегральных кривых, т. е. их поведение во всей области задания Д. у. Для нелинейных Д. у., где нахождение общего решения особенно сложно, вопросы качеств, теории Д. у. приобретают иногда даже доминирующее значение. После классич. работ А. М. Ляпунова ведущую роль в качеств, теории Д. у. играют работы сов. математиков, механиков и физиков. В связи с этой теорией см. Динамическая система, Особая точка, Устойчивость, Предельный цикл.

Большое значение имеет аналитич. теория Д. у., изучающая решения Д. у. с точки зрения теории аналитич. функций, т. е. интересующаяся, напр., расположением их особых точек в комплексной плоскости и т. п.

Наряду с рассмотренной выше начальной задачей, в к-рой задаются значения искомых функций (а в случае ур-ний старших порядков и их производных) в одной точке (при одном значении независимого переменного), находят широкое применение краевые задачи.

Дифференциальные уравнения с частными производными. Типичной особенностью Д. у. с частными производными и систем Д. у. с частными производными является то, что для однозначного определения частного решения здесь требуется задание не значений того или иного конечного числа параметров, а нек-рых функций. Напр., общим решением уравнения
[824-32.jpg]

является выражение u(t,x) = f(x + t) + g(x-t), где f и g - произвольные функции. Т. о., Д. у. (16) лишь в той мере ограничивает произвол в выборе функции двух переменных и(х,у), что её удаётся выразить через две функции f(z) и g(v) от одного переменного, к-рые остаются [если в дополнение к ур-нию (16) не дано к.-л. "начальных" или "краевых" условий] произвольными.

Типичной задачей с начальными условиями для системы Д. у. с частными производными 1-го порядка
[824-33.jpg]

где независимыми переменными являются t, x1, ..., хп, a u1, ..., umсуть функции от этих независимых переменных, может служить задача Коши: по заданным при к.-л. t = to значениям ui(t0,x1,...,хп)-фi(x1,..., хп) i=1, 2,..., т, найти функции т (t, xi, ..., хп).

В теории Д. у. с частными производными порядка выше первого и систем Д. у. с частными производными рассматриваются как задачи типа Коши, так и ряд краевых задач.

При постановке и решении краевых задач для Д. у. с частными производными порядка выше первого существенное значение имеет тип ур-ния. В качестве примера можно привести классификацию Д. у. с частными производными 2-го порядка с одной неизвестной функцией z (х, у) от двух переменных: F(x, у, z, р, q, r, s, t) = 0, (18) где
[824-34.jpg]

то (18) есть эллиптическое у р-ние. Примером может служить ур-ние Лапласа:
[824-35.jpg]

Если D<0, то (18) есть гиперболическое у р-н и е. Примером может служить ур-ние колебания струны:
[824-36.jpg]

Если D = 0, то (18) есть параболическое у р-н и е. Примером может служить ур-ние распространения тепла:

[824-37.jpg]

О краевых задачах для этих различных типов ур-ний см. Уравнения математической физики.

Лит.: Обыкновенные Д. у.Степанов В. В., Курс дифференциальных уравнений, 8 изд., М., 1959; Петровский И. Г., Лекции по теории обыкновенных дифференциальных уравнений, 5 изд., М., 1964; Понтрягин Л. С., Обыкновенные дифференциальные уравнения, 2 изд., М., 1965; Камке Э., Справочник по обыкновенным дифференциальным уравнениям, пер. с нем., 3 изд., М., 1965; Филиппов А. Ф., Сборник задач по дифференциальным уравнениям, 2 изд., М., 1965.

Д. у. с частными производными. Петровский И. Г., Лекции об уравнениях с частными производными, 3 изд., М., 1961; Тихонов А.Н., Самарский А. А., Уравнения математической физики, 3 изд., М., 1966; Соболев С. Л., Уравнения математической физики, 4 изд., М., 1966; Смирнов М. М., Задачи по уравнениям математической физики, 5 изд., М., 1968. По материалам одноимённой статьи из 2-го издания БСЭ.

"ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ", ежемесячный научный математич. журнал, осн. в 1965, издаётся в Минске. Публикует результаты исследований в области дифференциальных, ин-тегро-дифференциальных и интегральных ур-ний, а также ур-ний в конечных разностях. Переводится в США на англ. яз. и изд. под назв. "Differential equations".

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ОТКЛОНЯЮЩИМСЯ АРГУМЕНТОМ, уравнения, связывающие аргумент, а также искомую функцию и её производные, взятые, вообще говоря, при различных значениях этого аргумента (в отличие от обычных дифференциальных уравнений). Примерами могут служить ур-ния
[824-38.jpg]

где постоянные а, т, k заданы; t = t -- (t - t) в ур-нии (1) и t - kt в ур-нии (2) - отклонения аргумента. Такие ур-ния появились в кон. 18 в. Неоднократно рассматривались сами по себе и в связи с решением геом. задач, а позднее -в связи с различными приложениями, прежде всего к теории регулирования. Построение систематич. теории Д. у. с о. а. было начато в 50-х гг. 20 в., а уже с 60-х гг. эта теория представляет собой значительный отдел матем. анализа.

Наиболее хорошо изучены лине