БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101ия общественного спроса приходится вовлекать в с.-х. оборот и относительно худшие земли, плановое ценообразование необходимо осуществлять с учётом возмещения затрат и получения необходимой прибыли х-вами, располагающими такими землями, иначе будут подорваны хозрасчётные стимулы их возделывания. Колхозы и совхозы, использующие средние и лучшие земли, получают дополнит. доход в виде разницы между общественной ценой и индивидуальной стоимостью единицы продукта. А т. к. образование этого дохода обусловлено не трудовыми усилиями отд. коллективов, а общественными факторами воспроизводства, то на основе права обще-нар. собственности на землю он изымается гос-вом в форме Д. р. I. При этом совершенно снимается антагонистич. характер изъятия, поскольку Д. р. I не становится достоянием класса зем. собственников, а поступает в общенар. фонд и используется в интересах всего общества, в т. ч. для планомерного подъёма с. х-ва. Д. р. I изымается гос-вом через закупочные цены, дифференциацию планов закупок и подоходный налог.

Д. р. II возникает в результате различной производительности добавочных вложений: её масса и норма планомерно возрастают в условиях интенсификации, науч.-технич. прогресса в с.-х. произ-ве; она почти полностью остаётся у с.-х. предприятий.

Сложившиеся в социалистич. странах различные отношения зем. собственности обусловливают и разные конкретные формы распределения Д. р. Однако сущность рентных отношений и общие принципы распределения Д. р. остаются едиными независимо от того, вся земля национализирована или часть её находится в собственности кооперативов. В правильном экономич. регулировании рентных отношений при социализме важное значение имеет эффективное применение механизма распределения Д. р., прежде всего научно обоснованное ценообразование, учитывающее специфику с. х-ва.

Д. р. существует не только в с. х-ве, но и в добывающей пром-сти, строительстве, образуется в результате различий в производительности труда, обусловленных неравенством естественных условий разработки и использования полезных ископаемых, лесных угодий и т. д. При социализме Д. р. в добывающей пром-сти принадлежит всему обществу и используется в его интересах, в т. ч. для развития угольной, рудной и др. отраслей. Как стоимостная категория Д. р. перестанет существовать с отмиранием товарного произ-ва.

Лит. см. при ст. Земельная рента.

И. Н. Буздалов.



ДИФФЕРЕНЦИАЛЬНО-ДИАГНОСТИЧЕСКИЕ СРЕДЫ, специальные смеси питат. веществ (см. Питательные среды), на к-рых выращивают микроорганизмы для определения их видовой принадлежности. К Д.-д. с. относятся белковые среды, применяемые для определения гемо-литич. и протеолитич. способности микробов; среды, содержащие углеводы и индикаторы изменения кислотности (в результате утилизации микробами этих соединений); среды, содержащие вещества, служащие источником питания только для определ. видов бактерий, и др.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ, раздел математики, в к-ром изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную матем. дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 в.). Они сформулировали осн. положения Д. я. и чётко указали на взаимно обратный характер операций дифференцирования и интегрирования. С этого времени Д. и. развивается в тесной связи с интегральным исчислением, вместе с к-рым оно составляет осн. часть матем. анализа (или анализа бесконечно малых). Создание дифференциального и интегрального исчислений открыло новую эпоху в развитии математики. Оно повлекло за собой появление ряда матем. дисциплин: теорий рядов, теории дифференциальных уравнений, дифференциальной геометрии и вариационного исчисления. Методы матем. анализа нашли применение во всех разделах математики. Неизмеримо расширилась область приложений математики к вопросам естествознания и техники. "Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только с о-стояния, но и процессы: движение" (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 587).

Д. и. зиждется на следующих важнейших понятиях математики, определение и исследование к-рых составляют предмет введения в матем. анализ: действительные числа (числовая прямая), функция, предел, непрерывность. Все эти понятия выкристаллизовались и получили совр. содержание в ходе развития и обоснования дифференциального и интегрального исчислений. Осн. идея Д. и. состоит в изучении функций в малом. Точнее: Д. и. даёт аппарат для исследования функций, поведение к-рых в достаточно малой окрестности каждой точки близко к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия Д. и.: производная и дифференциал. Понятие производной возникло из большого числа задач естествознания и математики, приводящихся к вычислению пределов одного и того же типа. Важнейшие из них -определение скорости прямолинейного движения точки и построение касательной к кривой. Понятие дифференциала является матем. выражением близости функции к линейной в малой окрестности исследуемой точки. В отличие от производной, оно легко переносится на отображения одного евклидова пространства в другое и на отображения произвольных линейных нормированных пространств и является одним из осн. понятий совр. нелинейного функционального анализа.

Производная. Пусть требуется определить скорость прямолинейно движущейся материальной точки. Если движение равномерно, то пройденный точкой путь пропорционален времени движения; скорость такого движения можно определить как путь, пройденный за единицу времени, или как отношение пути, пройденного за нек-рый промежуток времени, к длительности этого промежутка. Если же движение неравномерно, то пути, пройденные точкой в одинаковые по длительности промежутки времени, будут, вообще говоря, различными. Пример неравномерного движения даёт тело, свободно падающее в пустоте. Закон движения такого тела выражается формулой s= gt2/2, где s -пройденный путь с начала падения (в метрах), t - время падения (в секундах), g - постоянная величина, ускорение свободного падения, g ~~ 9,81 м/сек2. За первую секунду падения тело пройдёт ок. 4,9 м, за вторую - ок. 14,7 м, а за десятую - ок. 93,2 м, т. е. падение происходит неравномерно. Поэтому приведённое выше определение скорости здесь неприемлемо. В этом случае рассматривается средняя скорость движения за нек-рый промежуток времени после (или до) фиксированного момента t; она определяется как отношение длины пути, пройденного за этот промежуток времени, к его длительности. Эта средняя скорость зависит не только от момента t, но и от выбора промежутка времени. В нашем примере средняя скорость падения за промежуток времени от t до t + Дt равна
[824-1.jpg]

Это выражение при неограниченном уменьшении промежутка времени Дt приближается к величине gt, к-рую называют скоростью движения в момент времени t. Таким образом, скорость движения в к.-л. момент времени определяется как предел средней скорости, когда промежуток времени неограниченно уменьшается.

В общем случае эти вычисления надо проводить для любого момента времени t, промежутка времени от t до t + At и закона движения, выражаемого формулой s = f(t). Тогда средняя скорость движения за промежуток времени от t aot + At даётся формулой Дs/Дt, где Дs = - f(t + Дt) - f(t), а скорость движения в момент времени t равна

[824-2.jpg]

Осн. преимущество скорости в данный момент времени, или мгновенной скорости, перед средней скоростью состоит в том, что она, как и закон движения, является функцией времени t, а не функцией интервала (f,t + Дt). С другой стороны, мгновенная скорость представляет собой некоторую абстракцию, поскольку непосредственному измерению поддаётся средняя, а не мгновенная скорость.

К выражению типа (*) приводит и задача (см. рис.) построения касательной к плоской кривой в нек-рой её точке М. Пусть кривая Г есть график функции у = f(x). Положение касательной будет определено, если будет найден её угловой коэффициент, т. е. тангенс угла а, образованного касательной с осью Ох. Обозначим через х<, абсциссу точки М, а через х1= ха + Дх - абсциссу точки M1. Угловой коэффициент секущей MM1равен
[824-3.jpg]


[824-4.jpg]

где Ду = М1N = f(x0 + Дх) - f(x0) -приращение функции на отрезке [х0,х1]. Определяя касательную в точке М как предельное положение секущей MM1, когда х1 стремится к х0, получаем
[824-5.jpg]

Отвлекаясь от механич. или геом.содержания приведённых задач и выделяя общий для них приём решения, приходят к понятию производной. Производной функции у = f(x) в точке х наз. предел (если он существует) отношения приращения функции к приращению аргумента, когда последнее стремится к нулю, так что
[824-6.jpg]

С помощью производной определяется, кроме уже рассмотренных, ряд важных понятий естествознания. Напр., сила тока

[824-7.jpg]

менение количества вещества за время Д?; вообще, производная по времени есть мера скорости процесса, применимая к самым разнообразным физ. величинам.

Производную функции у = f (х) обозначают f'(х), у', dy/dx, df/dx или Df (x). Если функция y = f(x) имеет в точке х0 производную, то она определена как в самой точке Ха, так и в нек-рой окрестности этой точки и непрерывна в точке ха. Обратное заключение было бы, однако, неверным. Напр., непрерывная в каждой точке функция у =|х| = + КОРЕНЬ(х2), графиком к-рой служат биссектрисы первого и второго координатных углов, при х = 0 не имеет производной, т. к. отношение Дy//Дx не имеет предела при Дх->0: если Дх> 0, это отношение равно + 1, а если Дx<0, то оно равно -1. Более того, существуют непрерывные функции, не имеющие производной ни в одной точке (см. Непрерывная функция).

Операцию нахождения производной называют дифференцированием. На классе функций, имеющих производную, эта операция линейна.
[824-8.jpg]

Здесь С, п и а - постоянные, я>0. Эта таблица, в частности, показывает, что производная от всякой элементарной функции есть снова элементарная функция.

Если производная f'(x), в свою очередь, имеет производную, то её называют второй производной функции у = f(x) и обозначают

у", f"(x), d2y/dx2, d2f/dx2 или D2f(x). Для прямолинейно движущейся точки вторая производная характеризует её ускорение.

Аналогично определяются и производные.более высокого (целого) порядка. Производная порядка п обозначается уn, fn(x), dny/dxn, dnf/dxnили Dnf(x).

Дифференциал. Функция у = f(x), область определения к-рой содержит нек-рую окрестность точки х0, наз. дифференцируемой в точке х0, если её приращение
[824-9.jpg]

где А=А(х0), а= a(x,х0)->0 при х->хо. В этом и только в этом случае выражение АДх наз. дифференциалом функции f(x) в точке ха и обозначается dy или df(xo). Геометрически дифференциал (при фиксированном значении -г0 и меняющемся приращении Дх) изображает приращение ординаты касательной, т. е. отрезок NT (см. рис.). Дифференциал dy представляет собой функцию как от точки х0, так и от приращения Дх. Говорят, что дифференциал есть главная линейная часть приращения функции, понимая под этим, что, при фиксированном х0, dy есть линейная функция от Дх; и разность Дy - dy есть бесконечно малая относительно Дх. Для функции f(x) = х имеем dx = Дх, т. е. дифференциал независимого переменного совпадает с его приращением. Поэтому обычно пишут dy = Adx. Имеется тесная связь между дифференциалом функции и её производной. Для того чтобы функция от одного п е-ременного y= f(x) имела в точке х0дифференциал, необходимо и достаточно, чтобы она имела в этой точке (конечную) производную f'(х0), и справедливо равенство dy = f (х0)dx. Наглядный смысл этого предложения состоит в том, что касательная к кривой y - f(x) в точке с абсциссой х0 как предельное положение секущей является также такой прямой, к-рая в бесконечно малой окрестности точки х0 примыкает к кривой более тесно, чем любая другая прямая. Таким образом, всегда А(х0) = f'(xa), запись dy/dx можно понимать не только как обозначение для производной f'(х0), но и как отношение дифференциалов зависимого и независимого переменных. В силу равенства dy = f'(х0)dx правила нахождения дифференциалов непосредственно вытекают из соответствующих правил нахождения производных.

Рассматриваются также дифференциалы высших порядков. На практике с помощью дифференциалов часто производят приближённые вычисления значений функции, а также оценивают погрешности вычислений. Пусть, напр., надо вычислить значение функции f(x) в точке х, если известны f(xo) и f'(xo). Заменяя приращение функции её дифференциалом, получают приближённое равенство f(x1)~~f(х0)+df(х0)=f(х0)+f'(х0)+(х1-х0)

Погрешность этого равенства приближённо равна половине второго дифференциала функции, т. е.
[824-10.jpg]

Приложения. В Д. и. устанавливаются связи между свойствами функции и её производных (или дифференциалов), выражаемые основными теоремами Д. и. К их числу относятся Ролля теорема, формула Лагранжа f(a) - f(b) = f'(c) (b-а), где a < с < b (подробнее см. Конечных приращений формула), и Тейлора формула.

Эти предложения позволяют методами Д. и. провести подробное исследование поведения функций, обладающих достаточной гладкостью (т. е. имеющих производные достаточно высокого порядка). Таким путём удаётся исследовать степень гладкости, выпуклость и вогнутость, возрастание и убывание функций, их экстремумы, найти их асимптоты, точки перегиба (см. Перегиба точка), вычислить кривизну кривой, выяснить характер её особых точек и т. д. Напр., условие f'(x)>0 влечёт за собой (строгое) возрастание функции у = f(x), а условие f"(x) >0 -её (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности её области определения, находятся среди корней уравнения f'(x) = 0.

Исследование функций при помощи производных составляет основное приложение Д. и. Кроме того, Д. и. позволяет вычислять различного рода пределы функций, в частности пределы вида О/С и БЕСКОНЕЧНОСТЬ/БЕСКОНЕЧНОСТЬ (см. Неопределённое выражение, Лопиталя правило). Д. и. особенно удобно для исследования элементарных функций, т. к. в этом случае их производные выписываются в явной форме.

Д. и. функций многих переменных. Методы Д. и. применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х,у) частной производной по х наз. производная этой функции по .г при постоянном у. Эта частная производная обозначается z'x, f'x(x,y), dz/dx или df(x,y)/dx, так что
[824-11.jpg]

Аналогично определяется и обозначается частная производная z по у. Величина

Дz = f(x + Дx,y + Дy) - f(x,y) наз. полным приращением функции z= f(x,y). Если его можно представить в виде
[824-12.jpg]

где а - бесконечно малая более высокого порядка, чем расстояние между точками (х,у) и (x + Дx,у + Дy), то говорят, что функция z=f(x,y) дифференцируема. Слагаемые АДх + ВДу образуют полный дифференциал dz функции z = f(x,y), причём А = z'x, B = z'y. Вместо Д.Т и Ду обычно пишут dx и dy, так что
[824-13.jpg]

Геометрически дифференцируемость функции дв