БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101) эпителия и поражение кровеносных сосудов с выпадением сетки фибрина (белок крови) и образованием плёнки; при поступлении токсина в кровь развивается общая интоксикация; при этом преим. поражаются нервная и сердечно-сосудистая системы, надпочечники, почки. Инкубац. период -2-10 дней.

По локализации процесса различают Д. зева (наиболее частая форма), дыхат. путей, носа, глаз, уха, наружных половых органов (у девочек), кожи, пупка у новорождённых, Д. ран и др.

Д. зева. При локализованной форме плёнчатые налёты покрывают миндалины, не переходя за их пределы, лим-фатич. узлы увеличены умеренно, темп-ра тела повышается до 38,5-39 °С. Недомогание, понижение аппетита, головная боль выражены незначительно. При распространённой форме налёты переходят с миндалин на слизистую оболочку нёбных дужек, язычка, глотки; общее недомогание выражено достаточно ярко. Токсич. форма характеризуется обширным поражением зева; миндалины отёчны, поверхность их покрыта толстыми налётами грязно-белого цвета. Процесс может распространиться на носоглотку и полость носа. Обычно развивается отёк подкожной клетчатки вокруг увеличенных верхнешейных лимфатич. узлов; явления интоксикации прогрессивно нарастают: нарушается сердечный ритм, глотание затруднено, при переходе процесса на органы дыхания нарушается дыхание, при явлениях миокардита в остром периоде отмечаются носовые кровотечения; боли в животе, понос, может наступить коллапс.

Д. дыхательных путей. При локализации процесса на слизистой оболочке гортани или трахеи вследствие образования плёнок, отёка, инфильтрации слизистой оболочки и спазм гортанной мускулатуры прогрессивно нарастают расстройства дыхания - дифтерийный круп. Круп проявляется "лающим" кашлем, сиплым голосом, вплоть до полной афонии (отсутствие голоса), резким затруднением вдоха. При переходе процесса на бронхи возникает тяжёлая форма Д.- распространённый круп.

Д. носа встречается у детей младшего возраста, интоксикация обычно не наблюдается; проявляется односторонним насморком с кровянистыми выделениями, склонна к затяжному течению.

Д. глаз, уха, наружных половых органов, пище-варит. тракта, кожи и ран, в т. ч. пупочной раны у новорождённых, в совр. мед. практике почти не встречается.

Осложнения отмечаются в основном лишь при токсич. форме Д., особенно при запоздалом начале сывороточного лечения. Коллапс развивается на 2-3-4-й день болезни и тяжёлый миокардит на 5-6-й день болезни; иногда возникают периферич. параличи, параличи черепно-мозговых нервов, токсич. нефроз; при дифтерийном крупе - пневмония.

Лечение. Возможно раннее введение антитоксич. противодифтерийной сыворотки; витаминотерапия; антибактериальная терапия. При дифтерийном крупе при нарастании явлений нарушения дыхания и кислородном голодании -срочная операция (интубация или трахеотомия).

Профилактика. Осн. роль в борьбе с Д. играет активная иммунизация. В СССР противодифтерийные прививки обязательны для всего детского населения (в период с 5-6 мес до 12-летнего возраста проводятся 1 вакцинация и 3 ревакцинации). Иммунизация проводится адсорбированным дифтерийным анатоксином. С 1958 в СССР прививки осуществляются ассоциированным препаратом (АКДС), в к-рый, кроме дифтерийного анатоксина, входят коклюшная вакцина и столбнячный анатоксин. В связи с активной иммунизацией заболеваемость Д. в СССР резко снизилась (с 1959 по 1966 - в 30,7 раза).

Как можно раньше выявляется и изолируется (госпитализируется) заболевший. После госпитализации больного проводится дезинфекция помещения. Все лица, находившиеся в контакте с больным, подлежат многократному бактерио-логич. обследованию и мед. наблюдению в течение 7 дней. Детям, контактировавшим с больным, на этот срок запрещено посещать детские учреждения (ясли, детсады, школы и др.); у них проверяют состояние специфич. иммунитета - реакция Шика (по им. австр. врача Б. Шика).

Лит.: Молчанов В. И., Дифтерия, 2 изд., М., 1960; Титова А.И.иФлек-сер С. Я., Дифтерия, М., 1967.

Р. Н. Рылеева, М. Я. Студеникин.

ДИФТЕРОИДЫ, бактерии, обладающие сходством с дифтерийными палочками -возбудителями дифтерии. Различают па-радифтерийные и ложнодифтерийные Д., имеющие вид коротких, толстых, неподвижных палочек. Парадифтерийные Д., в отличие от ложнодифтерийных, имеют 1-2 маленьких полярных зерна и не разлагают мочевину.

ДИФТОНГ (от греч. diphthongos -двугласный), сочетание двух гласных (слогового и неслогового) в одном слоге. Напр., франц. [oi]. Различаются: Д. восходящий, у к-рого слогообразующим элементом является второй из составляющих его гласных. Напр., франц. [ie], [ui]; Д. нисходящий, у к-рого слогообразующим является первый из составляющих его гласных. Напр., англ, [ai], Гаи].

ДИФФАМАЦИЯ (от лат. diffamo - порочу), в уголовном праве нек-рых бурж. гос-в распространение порочащих сведений. В отличие от клеветы, при Д. порочащие сведения могут и не носить клеветнич. характера.

ДИФФЕРДАНЖ (Differdange), город в Люксембурге, в округе Люксембург, близ границы с Францией. 17,8 тыс. жит. (1970). Центр металлургич. пром-сти; произ-во хим. удобрений. В р-не Д.-добыча жел. руды (продолжение Лота-рингского железорудного бассейна).

ДИФФЕРЕНТ СУДНА (от лат. dif-ferens, род. падеж differentis - разница), наклон судна в продольной плоскости. Д. с. характеризует посадку судна и измеряется разностью его осадок (углублений) кормой и носом. Если разность равна нулю, говорят, что судно "сидит на ровный киль", при положит, разности-судно сидит с дифферентом на корму, при отрицат. - с дифферентом на нос. Д. с. влияет на поворотливость судна, условия работы гребного винта, проходимость во льдах и пр. Д.с. бывает статический и ходовой, возникающий при больших скоростях движения. Д. с. обычно регулируют приёмом или удалением водяного-балласта.

ДИФФЕРЕНЦИАЛ (от лат. differentia - разность, различие) в математике, главная линейная часть приращения функции. Если функция y=f(x) одного переменного х имеет при х=х0 производную, то приращение
[823-26.jpg]

в этом разложении и называется дифференциалом функции f(x) в точке х0. Из этой формулы видно, что дифференциал dy линейно зависит от приращения независимого переменного Дх, а равенство Дy = dy +R показывает, в каком смысле Д. dy является главной частью приращения Дy.
Подробнее о Д. функций одного и нескольких переменных см. Дифференциальное исчисление.

Обобщение понятия дифференциала. Обобщение понятия Д. на вектор-функции, начало к-рому положили в начале 20 в. франц. математики Р. Гато и М. Фреше, позволяет лучше выяснить смысл понятия "дифференциал" для функций нескольких переменных, а в применении к функционалам приводит к понятию вариации, лежащему в основе вариационного исчисления.

Важную роль в этом обобщении играет понятие линейной функции (линейного отображения). Функция L(x) векторного аргумента х наз. л и-н е и н о и, если она непрерывна и удовлетворяет равенству
[823-27.jpg]

т. е. зависит только от векторного приращения h, и притом линейно, функция f(x) наз. дифференцируемой при значении аргумента .г, если её приращение Дf = f(x + h) - f(x), рассматриваемое как функция от h, имеет главную линейную часть L(h), т. е. выражается в виде Дf = L(h) + R(h),
где остаток R(h) при h->0 бесконечно мал по сравнению с h. Главная линейная часть L(h) приращения Дf и наз. дифференциалом df функции f в точке х. При этом в зависимости от того, в каком смысле понимается бесконечная малость R(h) по сравнению с h, различают слабый дифференциал, или дифференциал Гато, и сильный дифференциал, или дифференциал фреше. Если существует сильный Д., то существует и слабый Д., равный сильному Д. Слабый Д. может существовать и тогда, когда сильный не существует.

В случае f(x) = x из общего определения следует, что df = h, т. е. можно приращение h считать Д. аргумента х и обозначать dx.

Если сделать теперь переменной точку х, в к-рой определяется Д. df, то он будет функцией двух переменных: df(x;h)

Далее, считая h = h1 постоянным, можно найти Д. от дифференциала df(x; h1) как главную часть приращения df(x+h2;h1)-df(x;h1), где h2 - нек-рое второе, не связанное с h1приращение х. Получаемый таким образом второй дифференциал d2f=d2f(x; h1,h2) является функцией трёх векторных аргументов х, h1 и h2, линейной по каждому из двух последних аргументов. Если d2f непрерывно зависит от х, то он симметричен относительно h1 и h2: d*f(x; h1, h2) = d2f(x; h2, h1). Аналогично определяется дифференциал dnf=dnf(x; h1,...,hn) любого порядка п. В вариационном исчислении сам векторный аргумент х является функцией x(t), а дифференциалы df и d2f функционала f[x(t)] наз. его первой и второй вариациями и обозначаются бf и б2f.

Всюду выше речь шла об обобщении понятия Д. на числовые функции векторного аргумента. Существует обобщение понятия Д. и на случай вектор-функций, принимающих значения в банаховых пространствах.

Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 2 изд., М., 1967; Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Кудрявцев Л. Д., Математический анализ, т. 1, М., 1970; Рудин У., Основы математического анализа, пер. с англ., М., 1966; Дьедонне Ж., Основы современного анализа, пер. с англ., М., 1964.

А. Н. Колмогоров.

ДИФФЕРЕНЦИАЛ, дифференциальный механизм в приводе ведущих колёс автомобиля, трактора или др. транспортных машин. Д. обеспечивает вращение ведущих колёс с разными относит, скоростями при прохождении кривых участков пути.

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ, раздел геометрии, в к-ром гео-метрич. образы изучаются методами ма-тематич. анализа. Главными объектами Д. г. являются произвольные достаточно гладкие кривые (линии) и поверхности евклидова пространства, а также семейства линий и поверхностей. Обычно в Д. г. исследуются локальные свойства геометрич. образов, к-рые присущи сколь угодно малой их части. Рассматриваются также и свойства геометрич. образов в целом (напр., свойства замкнутых выпуклых поверхностей).

Геометрические объекты, изучаемые в Д. г., обычно подчинены нек-рым требованиям гладкости. Как правило, эти требования выражаются в том, что функции, задающие указанные объекты, не менее двух раз непрерывно дифференцируемы.

Сущность методов Д. г., применяемых для выяснения локальных свойств геометрич. объектов, проще всего уяснить на примере локального исследования формы кривых.

В каждой точке М достаточно гладкой кривой L можно построить касательную прямую МТ и соприкасающуюся плоскость л (рис. 1). При этом касательная МТ является пределом секущей MN при неограниченном приближении точки N к М по кривой L, а соприкасающаяся плоскость есть предел переменной плоскости, проходящей через касательную МТ и точку N при приближении N к М по L. Касательную МТ можно рассматривать также как прямую, наиболее тесно прилегающую к L вблизи точки М. Соприкасающаяся же плоскость представляет собой плоскость, наиболее тесно прилегающую к L вблизи М.

[823-28.jpg]

Рис. 1.

Для геометрич. характеристики искривлённости кривой L вблизи данной точки М рассматривается соприкасающаяся окружность, представляющая собой окружность, проходящую через М и наиболее тесно прилегающую к L, вблизи М. Это свойство выражается в том, что если учитывать величины только 1-го и 2-го порядка малости по сравнению с длиной дуги MN, то участок кривой L вблизи М можно считать дугой соприкасающейся окружности. Соприкасающаяся окружность касается L в точке М и расположена в соприкасающейся плоскости. Её центр наз. центром кривизны кривой L в точке М, а радиус - радиусом кривизны L в М.

Для численной характеристики искривлённости L в точке М используется кривизна k кривой, равная обратной величине радиуса R соприкасающейся окружности: k=1/R. Кривизну k можно рассматривать и как меру отклонения L от касательной МТ (рис. 1):
[823-29.jpg]

[823-30.jpg]

Рис. 2.

Мерой отклонения кривой от соприкасающейся плоскости я в точке М служит т. н. кручение а, к-рое определяется как предел отношения угла (3 между соприкасающимися плоскостями в точках М и N к длине Дs дуги MN при Дs->О:
[823-31.jpg]

При этом угол р берётся со знаком +, если для наблюдателя в М вращение соприкасающейся плоскости в N при приближении N к М происходит против часовой стрелки, и со знаком - в противном случае. Кручение кривой можно рассматривать как скорость изменения (вращения) соприкасающейся плоскости. В частности, для плоской кривой соприкасающаяся плоскость во всех точках совпадает с плоскостью кривой и поэтому кручение такой кривой во всех точках равно нулю. Кривизна k и кручение а достаточно гладкой кривой L, определены в каждой её точке и представляют собой функции параметра, определяющего точки этой кривой. Для вычисления k и а используется к.-л. способ задания кривой. Чаще всего кривая L задаётся па-раметрич. уравнениями в прямоугольных координатах: x = ф (t), y= w(t) , z = х(t)- (1) При изменении параметра t точка М с координатами (x, у, z) описывает кривую L. Иными словами, параметрич. уравнения кривой связаны с представлением о кривой как траектории движущейся точки. Правые части (1) могут рассматриваться и как проекции на оси координат радиуса-вектора r переменной точки М кривой L. Вектор г' с координатами {ф'(0, w'(t), Х'(t)} наз. производной вектор-функции r(t) и направлен по касательной к L в точке М.

Кривизна и кручение вычисляются по формулам
[823-32.jpg]

в к-рых [r', r"] - векторное, а r'r"r'" -смешанное произведение (см. Векторное исчисление).

С каждой точкой М кривой L связаны три единичных вектора: касательной (t), главной нормали (n) и бинормали (b) (рис. 1). При этом вектор (га) расположен в соприкасающейся плоскости и направлен от точки М к центру кривизны L в М, а вектор Ь ортогонален t и и и направлен так, что векторы г, н и b образуют правую тройку. Указанная тройка векторов образует т. н. основной, или сопровождающий, триедр кривой L. Плоскости векторов (n,b) и (t, b) наз. соответственно нормальной и спрямляющей плоскостями L в М.

Формулы для производных векторов t, п, b по длине s дуги L наз. формулами френе. Они играют фундаментальную роль как в теории кривых, так и в приложениях этой теории (в механике, теоретич. физике и т. д.). Эти формулы имеют вид
[823-33.jpg]

Если кривизна и кручение не равны нулю в точке М, то можно сделать определённые заключения о форме L вблизи М: проекции L на соприкасающуюся и нормальную плоскости в М имеют вид, изображённый соответственно на рис. 3 и 4. Форма проекции на спрямляющую плоскость зависит от знака кручения. На рис. 5 и 6 изображены проекции L на спрямляющую плоскость для o>0 и o <0. Кривизна и кручение вполне определяют кривую. Именно, если между точками двух кривых установлено соответствие так, что соответствующие дуги этих кривых имеют одинаковую длину и в соответствующих точках кривые имеют равные кривизны и равные кручения, то эти кривые могут быть совмещены посредством движе