БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101 поведение микрочастиц может быть объяснено на основе представления о частицах, в других, как, напр., в явлениях Д., на основе представления о волнах. Согласно квантовой механике, каждой частице соответствует т. н. волна де Бройля, длина к-рой зависит от энергии частицы. Так, электрону с энергией 1 эв соответствует волна де Бройля длиной того же порядка, что и размер атома. Д. электронов и нейтронов широко пользуются для изучения строения вещества.
В. Н. Парыгин.

ДИФРАКЦИЯ АТОМОВ И МОЛЕКУЛ, см. Дифракция частиц.

ДИФРАКЦИЯ НЕЙТРОНОВ, см. Дифракция частиц.

ДИФРАКЦИЯ РАДИОВОЛН, явления,возникающие при встрече радиоволн с препятствиями. Радиоволна, встречая при распространении в однородной среде препятствие, изменяется по амплитуде и фазе и проникает в область тени, отклоняясь от прямолинейного пути. Это явление, аналогичное дифракции света, называется Д. р. В реальных случаях распространения радиоволн препятствия могут иметь произвольную форму и быть как непрозрачными, так и полупрозрачными для радиоволн.

Д. р. на сферич. поверхности Земли является одной из причин приёма радиосигналов за пределами прямой видимости, когда передатчик и приёмник разделены выпуклостью земного шара. Эффект дифракционного проникновения радиоволны в область тени, как и в оптич. случае, зависит от соотношения между размером препятствия и длиной волны и выражен тем сильнее, чем больше длина волны. С другой стороны, радиоволны, распространяясь вблизи полу проводящей поверхности Земли, затухают вследствие частичного поглощения энергии волны Землёй тем сильнее, чем короче волна. Поэтому дальность распространения т. н. земной волны существенно зависит от её длины. Достаточно длинные волны могут распространяться за счёт Д. р. на значит, расстояния, достигающие иногда неск. тысяч км.

Д. р. на отдельно стоящих зданиях и выпуклостях рельефа, расположенных вдоль трассы (горы и др.), также может играть полезную роль. Она вызывает перераспределение энергии волны и может привести к "усилению" радиосигнала за препятствием.

Особую роль играет дифракция при распространении радиоволн в средах, содержащих локальные неоднородности, напр. в ионосфере, где радиоволна встречает множество хаотически расположенных препятствий - облаков различной формы, отличающихся электрич. свойствами. Непрерывно происходящие изменения и движения неоднородностей вызывают изменения энергии сигнала в точке приёма - т. н. дифракционные замирания радиоволны.

Дифракционные явления могут быть существенными при излучении радиоволн направленными антеннами и при радиолокации сложных объектов.

Лит. см. при ст. Распространение радиоволн.

ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ, рассеяние рентгеновских лучей кристаллами (или молекулами жидкостей и газов), при к-ром из начального пучка лучей возникают вторичные отклонённые пучки той же длины волны, появившиеся в результате взаимодействия первичных рентгеновских лучей с электронами вещества; направление и интенсивность вторичных пучков зависят от строения рассеивающего объекта. Дифрагированные пучки составляют часть всего рассеянного веществом рентгеновского излучения. Наряду с рассеянием без изменения длины волны наблюдается рассеяние с изменением длины волны -т. н. комптоновское рассеяние (см. Комптона эффект). Явление Д. р. л., доказывающее их волновую природу, впервые было экспериментально обнаружено на кристаллах нем. физиками М. Лауэ, В. Фридрихом и П. Книппингом в 1912. Кристалл является естественной трёхмерной дифракционной решёткой для рентгеновских лучей, т. к. расстояние между рассеивающими центрами (атомами) в кристалле одного порядка с длиной волны рентгеновских лучей (~ 1А= = 10-8 см). Д. р. л. на кристаллах можно рассматривать как избирательное отражение рентгеновских лучей от систем атомных плоскостей кристаллич. решётки (см. Брэгга - Вульфа условие). Направление дифракционных максимумов удовлетворяет одновременно трём условиям:

a (cos а - cos а0) = НX,
b(cosВ--cosВ0) = KX,
с (cos у-cos y0) = LX

Здесь а, b, с-периоды кристаллической решётки по трём её осям; а0, В0, y0 -углы, образуемые падающим, а а, В, y -рассеянным лучами с осями кристалла; Х - длина волны рентгеновских лучей, Н, К, L - целые числа. Эти уравнения наз. уравнениями Лауэ. Дифракционную картину получают либо от неподвижного кристалла с помощью рентгеновского излучения со сплошным спектром (т. н. лауэграмма; рис. 1), либо от вращающегося или колеблющегося кристалла (углы ас, Зо меняются, a yo остаётся постоянным), освещаемого монохроматич. рентгеновским излучением (X - постоянно), либо от поликристалла, освещаемого мс~ нохроматич. излучением. В последнем случае, благодаря тому что отд. кристаллы в образце ориентированы произвольно, меняются углы а0, В0, y0.

Рис. 1. Лауэграмма берилла.

Интенсивность дифрагированного луча зависит в первую очередь от т. н. структурного фактора, к-рый определяется атомными факторами атомов кристалла, их расположением внутри элементарной ячейки кристалла, а также характером тепловых колебаний атомов. Структурный фактор зависит от симметрии расположения атомов в элементарной ячейке. Интенсивность дифрагированного луча зависит также от размеров и формы объекта, от совершенства кристалла и пр.

Д. р. л. от поликристаллич. тел приводит к возникновению резко выраженных конусов вторичных лучей. Осью конуса является первичный луч, а угол раствора конуса равен 4 О (О - угол между отражающей плоскостью и падающим лучом). Каждый конус соответствует определённому семейству кристаллич. плоскостей. В создании конуса участвуют все кристаллики, семейство плоскостей к-рых расположено под углом ft к падающему лучу. Если кристаллики малы и их приходится очень большое количество на единицу объёма, то конус лучей будет сплошным. В случае текстуры, т. е. наличия предпочтительной ориентировки кристалликов, дифракционная картина (рентгенограмма) будет состоять из неравномерно зачернённых колец (см. также Дебая - Шеррера метод).

Метод Д. р. л. на кристаллах дал возможность определять длину волны рентгеновских лучей, если известна структура кристаллич. решётки, благодаря чему возникла рентгеновская спектроскопия, сыгравшая важную роль при установлении строения атома. Наблюдения Д. р. л. известной длины волны на кристалле неизвестной структуры позволяют установить характер этой структуры (расположение ионов, атомов и молекул, составляющих кристалл), что послужило основой рентгеновского структурного анализа.

Д. р. л. наблюдается также при рассеянии их аморфными твёрдыми телами, жидкостями и газами. В этом случае на кривой зависимости интенсивности от угла рассеяния вокруг центрального пятна появляются широкие кольца типа гало (рис. 2). Положение этих колец (угол в) определяется средним расстоянием между молекулами или расстояниями между атомами в молекуле. Из зависимости интенсивности от угла рассеяния можно определить распределение плотности вещества.


Рис. 2. Рентгенограмма воды.

Д. р. л. можно наблюдать также на обычной оптической дифракционной решётке при скользящем падении (меньше угла полного отражения) рентгеновских лучей на решётку. С помощью этого метода можно непосредственно и с большой точностью измерять длины волн рентгеновских лучей.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Боровский И. Б., Физические основы рентгеноспектральных исследований, М., 1956. В. И. Иверонова.

ДИФРАКЦИЯ СВЕТА, явления, наблюдающиеся при распространении света мимо резких краёв непрозрачных или прозрачных тел, сквозь узкие отверстия. При этом происходит нарушение прямолинейности распространения света, т. е. отклонение от законов геометрической оптики. Вследствие Д. с. при освещении непрозрачных экранов точечным источником света на границе тени, где, согласно законам геометрич. оптики, должен был бы происходить скачкообразный переход от тени к свету, наблюдается ряд светлых и тёмных дифракционных полос (рис. 1
и 2). Поскольку дифракция свойственна всякому волновому движению, открытие Д. с. в 17 в. итальянским физиком и астрономом Ф. Гримальди и её объяснение в начале 19 в. французским физиком О. Френелем явились одним из основных доказательств волновой природы света.


Рис. 1. Тень винта, окружённая дифракционными полосами.

Приближённая теория Д. с. основана на применении Гюйгенса-Френеля принципа. Для качественного рассмотрения простейших случаев Д. с. может быть применено построение зон Френеля. При прохождении света от точечного источника через небольшое круглое отверстие в непрозрачном экране (рис. 2, а) или вокруг круглого непрозрачного экрана (рис. 2, б) наблюдаются дифракционные полосы в виде концентрич. окружностей.


Рис. 2. Дифракционные кольца при прохождении света: а - через круглое отверстие; б - вокруг круглого экрана.

Если отверстие оставляет открытым чётное число зон, то в центре дифракционной картины получается тёмное пятнышко, при нечётном числе зон - светлое. В центре тени от круглого экрана, закрывающего не слишком большое число зон Френеля, получается светлое пятнышко.

Различают 2 случая Д. с. - дифракция сферич. волны, при к-рой размер отверстия сравним с размером зоны Френеля, т. е. b~КОРЕНЬ(zX), где b -размер отверстия, z - расстояние точки наблюдения от экрана, X - длина волны (дифракция Френеля), и Д. с. в параллельных лучах, при к-рой отверстие много меньше одной зоны Френеля, т. е. b<<КОРЕНЬ(zX) (дифракция Фраунгофера). В последнем случае при падении параллельного пучка света на отверстие пучок становится расходящимся с углом расходимости ф ~ Х/b (дифракционная расходимость).
[823-13.jpg]

Рис. 3. Дифракция Фраунгофера на щели.

Большое практич. значение имеет случай Д. с. на щели. При освещении щели параллельным пучком монохроматич. света на экране получается ряд тёмных и светлых полос, быстро убывающих по интенсивности. Если свет падает перпендикулярно к плоскости щели, то полосы расположены симметрично относительно центральной полосы (рис. 3), а освещённость меняется вдоль экрана периодически с изменением ф, обращаясь в нуль при углах ср, для к-рых sin ф = m Х/b (m = = 1,2,3,...). При промежуточных значениях освещённость достигает макс, значений. Главный максимум имеет место при m=0, при этом sin ф = 0, т. е. ф = 0. Следующие максимумы, значительно уступающие по величине главному, соответствуют значениям ф, определённым из условий: sin = l,43X/b; 2.46Х/6b; 3,47 Х/b и т. д.

С уменьшением ширины щели центральная светлая полоса расширяется, а при данной ширине щели положение минимумов и максимумов зависит от X, т. е. расстояние между полосами тем больше, чем больше X. Поэтому в случае белого света имеет место совокупность соответствующих картин для разных цветов. При этом главный максимум будет общим для всех X и представится в виде белой полоски, переходящей в цветные полосы с чередованием цветов от фиолетового к красному.

Если имеются 2 идентичные параллельные щели, то они дают одинаковые накладывающиеся друг на друга дифракционные картины, вследствие чего максимумы соответственно усиливаются, а кроме того, происходит взаимная интерференция волн от первой и второй щелей, значительно осложняющая картину. В результате минимумы будут на прежних местах, т. к. это те направления, по к-рым ни одна из щелей не посылает света. Кроме того, возможны направления, в к-рых свет, посылаемый двумя щелями, взаимно уничтожается. Т. о., прежние минимумы определяются условиями: b sin ф = X, 2Х, ЗХ, . ., добавочные минимумы d sin ф = = Х/2, ЗХ/2, 5Х/2, ... (d - размер щели b вместе с непрозрачным промежутком а), главные максимумы d sin ф = 0,Х, 2Х, ЗХ, ..., т. е. между двумя главными максимумами располагается один добавочный минимум, а максимумы становятся более узкими, чем при одной щели. Увеличение числа щелей делает это явление ещё более отчётливым (см. Дифракционная решётка).

Д. с. играет существенную роль при рассеянии света в мутных средах, напр. на пылинках, капельках тумана и т. п. На Д. с. основано действие спектральных приборов с дифракционной решёткой (дифракционных спектрометров). Д. с. определяет предел разрешающей способности оптич. приборов (телескопов, микроскопов и др.). Благодаря Д. с. изображение точечного источника (напр., звезды в телескопе) имеет вид кружка с диаметром Xf/D, где D - диаметр объектива, a f - его фокусное расстояние. Расходимость излучения лазеров также определяется Д. с. Для уменьшения расходимости лазерного пучка его преобразуют в более широкий пучок при помощи телескопа, и тогда расходимость излучения определяется диаметром D объектива по формуле ф~Х/О.

Лит.: Ландсберг Г. С.. Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Горелик Г. С., Колебания и волны, 2 изд., М., 1959, гл. 9.

ДИФРАКЦИЯ ЧАСТИЦ, рассеяние микрочастиц (электронов, нейтронов, атомов и т. п.) кристаллами или молекулами жидкостей и газов, при к-ром из начального пучка частиц данного типа возникают дополнит, отклонённые пучки этих частиц; направление и интенсивность таких отклонённых пучков зависят от строения рассеивающего объекта.

Д. ч. может быть понята лишь на основе квантовой теории. Дифракция - явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т. д. Дифракция при рассеянии частиц, с точки зрения классич. физики, невозможна.

Квантовая механика устранила абс. грань между волной и частицей. Осн. положением квантовой механики, описывающей поведение микрообъектов, является корпускулярно-волновой дуализм, т. е. двойственная природа микрочастиц. Так, поведение электронов в одних явлениях, напр. при наблюдении их движения в камере Вильсона или при измерении электрич. заряда в фотоэффекте, может быть описано на основе представлений о частицах, в других же, особенно в явлениях дифракции,- только на основе представления о волнах. Идея "волн материи" была высказана франц. физиком Л. де Бройлем в 1924 и вскоре получила блестящее подтверждение в опытах по Д. ч.

Согласно квантовой механике, свободное движение частицы с массой т и импульсом р = mv (где v - скорость частицы) можно представить как плоскую монохроматич. волну w0 (волну де Брой-ля) с длиной волны

Х = h/p, (1) распространяющуюся в том же направлении (напр., в направлении оси x), в к-ром движется частица (рис. 1). Здесь h -Планка постоянная. Зависимость w0от координаты х даётся формулой
[823-14.jpg]

направлен в сторону распространения волны, или вдоль движения частицы.

[823-15.jpg]

Рис. 1. Сопоставление волны и свободно движущейся частицы. Вверху показано прямолинейное движение частицы с массой m и импульсом p=mv (v - скорость частицы), внизу - распространение соответствующей ей "материальной волны" w0 ~COS k0x с длинной волны X = h/p.

Т. о., волновой вектор монохроматич. волны, связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны.

Поскольку кинетич. энергия сравнительно медленно движущейся частицы Е = mv2/2, длину волны можно выразить и через энергию: <