БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ДРЕНАЖНЫЕ ТРУБЫ, часть конструкции горизонтального дренажа.
ЕДИНАЯ ДЕМОКРАТИЧЕСКАЯ ЛЕВАЯ ПАРТИЯ (Eniaia Demokratike Aristera, ЭДА).
ЖЕЛЕЗО САМОРОДНОЕ, по условиям нахождения различаются теллурическое.
ЖУРНАЛИСТСКОЕ ОБРАЗОВАНИЕ, система подготовки лит. сотрудников.
КАССОВЫЙ ПЛАН Госбанка СССР.
КЛИСТРОН [от греч. klyzo - ударять, окатывать (волной) и (элек)трон].
АЙСАН, озеро в межгорной котловине среди отрогов.
ЗАЩИТА ОРГАНИЗМА ОТ ИЗЛУЧЕНИЙ ионизирующих.
ЗЕРКАЛЬНО-ЛИНЗОВЫЙ ТЕЛЕСКОП, катадиоптрический телескоп.
ЗУБР (Bison bonasus), европейский дикий лесной бык.


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

139861221536085229101реходов) наблюдается сильная нелинейная зависимость Р(Е).

При высоких частотах электрич. прочность Д. повышается, поэтому нелинейные свойства любых Д. проявляются в высокочастотных полях больших амплитуд. В луче лазера могут быть созданы электрич. поля напряжённости 108 в/см. В таких полях становятся очень существенными нелинейные свойства Д., что позволяет осуществить преобразование частоты света, самофокусировку света и др. нелинейные эффекты (см. Нелинейная оптика).

Д. в науке и технике используются прежде всего как электроизоляционные материалы. Для этого необходимы Д .с большим удельным сопротивлением, высокой электрической прочностью и малым углом диэлектрических потерь. Д. с высоким значением е используются как конденсаторные материалы. Ёмкость конденсатора, заполненного Д., возрастает в е раз. Пьезоэлектрики широко применяются для преобразований звуковых колебаний в электрические и наоборот (приёмники и излучатели ультразвука, звукосниматели и др., см. Пьезоэлектрический датчик). Пироэлектрики служат для индикации и измерения интенсивности инфракрасного излучения. Сегнетоэлектрики применяют в радиотехнике для создания нелинейных элементов, входящих в состав различных схем (усилители, стабилизаторы частоты и преобразователи электрических сигналов, схемы регулирования и др.).

Д. используются и в оптике. Чистые Д. прозрачны в оптич. диапазоне. Вводя в Д. примеси, можно окрасить его, сделав непрозрачным для определённой области спектра (фильтры). Диэлектрические кристаллы используются в квантовой электронике (в квантовых генераторах света - лазерах и квантовых усилителях СВЧ). Ведутся работы по использованию Д. в вычислительной технике и т. п.

Лит.: Феинман Р., Лейтон Р., Сэндс М., Фейнмановские лекции по физике, [в. 5] - Электричество и магнетизм, пер. с англ., М., 1966; Калашникове. Г., Электричество, 2 изд., М., 1964; физический энциклопедический словарь, т. 1, М., 1960; Сканави Г. И., Физика диэлектриков (Область слабых полей), М. -Л., 1949; его же. Физика диэлектриков (Область сильных полей), М.,1958; Фрёлих Г., Теория диэлектриков, М., 1960; Xиппeль А. Р., Диэлектрики и волны, пер. с англ., М., 1960; Же л у дев И. С., Физика кристаллических диэлектриков, М., 1968. А-П.Леванюк, Д. Г. Санников.

ДИЭЛЕКТРИЧЕСКАЯ АНТЕННА, антенна в виде отрезка диэлектрич. стержня, возбуждённого радиоволноводом или штырём коаксиального кабеля. В стержне Д. а. (рис.) возбуждается волна особой структуры (т. н. поверхностная волна), распространяющаяся вдоль его оси, и, как следствие, на поверхности стержня возникают тангенциальные (касательные к поверхности) составляющие электрич. и магнитного полей, фаза к-рых меняется ло закону бегущей волны.

[825-11.jpg]

Диэлектрическая антенна: 1 - конусообразный стержень; 2 - штырь, излучающий радиоволны в стержень; 3 -коаксиальный кабель. Стрелками показано направление излучения антенны.

По существу Д. а. представляет собой бегущей волны антенну, состоящую из элементарных электрич. и магнитных вибраторов. Её максимум излучения, как и всякой антенны бегущей волны, совпадает с осью стержня. Характер излучения Д. а. зависит от фазовой скорости распространения поверхностной волны. С увеличением диаметра стержня и диэлектрич. проницаемости материала, из к-рого он выполнен, фазовая скорость уменьшается. Чем меньше фазовая скорость, тем больше длина стержня, при к-рой коэфф. направленного действия (КНД)антенны максимален (т. н. оптимальная длина), и больше максимально возможный КНД. По мере уменьшения фазовой скорости или приближения её к скорости света в окружающей среде (воздухе) диэлектрич. стержень теряет волноводные свойства. Это приводит к резкому спаданию поля к концу стержня, увеличению излучения в окружающую Д. а. среду непосредственно из открытого конца радиоволновода и уменьшению эффективности Д. а. Диаметр и материал стержня обычно выбирают так, чтобы фазовая скорость была не очень близкой к скорости света (не более 0,95-0,96 скорости света). При такой фазовой скорости оптимальная длина равна 12 длинам излучаемой волны и КНД равен ~ 100. Стержень Д. а. изготовляют из диэлектрич. материалов с малым затуханием электромагнитных волн в них - полистирол, фторопласт и др. Д. а. применяют преим. на летательных аппаратах в радиоустройствах, работающих на сантиметровых и дециметровых волнах.

О. Н. Терёшин, Г. К. Галимов.

ДИЭЛЕКТРИЧЕСКАЯ ВОСПРИИМЧИВОСТЬ, величина, характеризующая способность диэлектриков к поляризации. Количественно Д. в. - коэфф. пропорциональности х в соотношении Р = хE, где Е - напряжённость электрич. поля, Р - поляризация диэлектрика (диполь-ный момент единицы объёма диэлектрика). Д. в. характеризует диэлектрич. свойства вещества так же, как и диэлектрическая проницаемость е, с к-рой она связана соотношением: 8= 1 + 4пх. Лит. см. при ст. Диэлектрики.

ДИЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ, устаревшее название диэлектрической проницаемости.

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина, характеризующая диэлектрические свойства среды - её реакцию на электрическое поле. В соотношении D = еЕ, где Е - напряжённость электрич. поля, D - электрич. индукция в среде, Д. п. - коэффициент пропорциональности Е. В большинстве диэлектриков при не очень сильных полях Д. п. не зависит от поля Е. В сильных электрич. полях (сравнимых с внутриатомными полями), а в нек-рых диэлектриках (напр., сегнетоэлектриках) в обычных полях зависимость D от Е - нелинейная (см. Нелинейная, оптика).

Величина Д. п. существенно зависит от типа вещества и от внешних условий (темп-ры, давления и т. п.). В переменных электрических полях Д. п. зависит от частоты поля Е (см. Диэлектрики). О методах измерения Д. п. см. Диэлектрические измерения.

Лит. см. при ст. Диэлектрики, Электроизоляционные материалы.

ДИЭЛЕКТРИЧЕСКАЯ ЭЛЕКТРОНИКА, область физики, занимающаяся исследованием и практич. применением явлений, связанных с протеканием электрич. токов в диэлектриках. Концентрация электронов проводимости или к.-л. других свободных носителей заряда в диэлектриках (дырок, ионов) пренебрежимо мала. Поэтому до недавнего времени диэлектрики в электро- и радиотехнике использовались только как изоляторы (см. Электроизоляционные материалы). Исследования тонких диэлектрич. плёнок показали, что при контакте с металлом в диэлектрик переходят электроны или дырки, в результате чего у контакта в тонком слое диэлектрика появляются в заметном количестве свободные носители заряда. Если диэлектрик массивный, то весь его остальной объём действует по-прежнему как изолятор, и поэтому в системе металл-диэлектрик-металл ток ничтожно мал. Если же между двумя металлич. электродами поместить тонкую диэлектрич. плёнку (обычно 1-10 мкм), то эмитируемые из металла электроны заполнят всю толщу плёнки и напряжение, приложенное к такой системе, создаст ток через диэлектрик.

Теоретически возможность протекания управляемых эмиссионных токов через диэлектрик была предсказана англ, физиками Н. Моттом и Р. Гёрни в 1940. Д. э. изучает протекание токов, ограниченных пространственным зарядом в диэлектриках, при термоэлектронной эмиссии из металлов и полупроводников, при туннельной эмиссии и т. д.

Простейший прибор Д. э. - диэлектрич. диод представляет собой сандвич-структуру металл - диэлектрик - металл (рис. 1). Он во многом аналогичен электровакуумному диоду и поэтому наз. аналоговым.
[825-12.jpg]

Его выпрямляющее действие обусловлено различием работы выхода электронов из электродов, изготовленных из разных металлов. Для одного из электродов - истока (аналог катода) применяется металл, у к-рого работа выхода электронов в данный диэлектрик мала (доли эв); для второго (сток - аналог анода) -металл с большой работой выхода (1-2 эв). Поэтому в одном направлении возникают значительные токи, а в обратном направлении токи исчезающе малы. Коэффициент выпрямления диэлектрического диода достигает значений 104 и выше.

Создание диэлектрич. триода связано с технологич. трудностями размещения управляющего электрода - затвора (аналог сетки в электровакуумном триоде) в тонком слое диэлектрика между истоком и стоком. В одном типе триода эмиссия происходит из полупроводника п, обладающего электронной проводимостью, в высокоомный полупроводник р с дырочной проводимостью, который играет роль диэлектрика (рис. 2). Низкоомные области, образованные из полупроводника Р+с высокой дырочной проводимостью, исполняют роль, во многом сходную с ролью металлич. ячеек сетки электровакуумного триода. Подаваемое на эти области внешнее напряжение управляет величиной тока, протекающего между истоком и стоком.

[825-13.jpg]

Рис. 2. Горизонтальный разрез диэлектрического триода со встроенной сеткой; п - полупроводник, обладающий электронной проводимостью; р - диэлектрик (высокоомный полупроводник с дырочной проводимостью), в к-рый происходит эмиссия электронов; Р+ -низкоомные области полупроводника с дырочной проводимостью, через к-рые электроны не проходят.

В другом типе триода (рис. 3) затвор помещён вне диэлектрика CdS; его роль сводится к изменению распределения потенциала в диэлектрике, от чего существенно зависит величина тока. физ. картина явлений в этих триодах значительно сложнее и существенно отличается от протекания эмиссионных токов в вакууме. Распространение получили триоды с изолированным затвором МОП (металл -окисел - полупроводник) или МДП (металл - диэлектрик - полупроводник).

[825-14.jpg]

Рис. 3. Структура триода с изолированным затвором.

В приборах Д. э. удачно сочетаются достоинства полупроводниковых и электровакуумных приборов и отсутствуют многие их недостатки. Приборы Д. э. микроминиатюрны. Создание эмиссионных токов в диэлектриках не требует затрат энергии на нагрев эмитирующего электрода и не сталкивается с проблемой отвода тепла. Диэлектрич. приборы малоинерционны, обладают хорошими частотными характеристиками, низким уровнем шумов, мало чувствительны к изменениям температуры и радиации.

Лит.: Мотт Н., Герни Р., Электронные процессы в ионных кристаллах, пер. с англ., М., 1950; Адирович Э. И., Электрические поля и токи в диэлектриках, "Физика твердого тела", 1960, т. 2, в. 7, с. 1410; его же, Эмиссионные токи в твердых телах и диэлектрическая электроника, в сб.: Микроэлектроника, под ред. Ф. В. Лукина, в. 3, М., 1969, с. 393. Э. И. Адирович.

ДИЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ, измерения величин, характеризующих свойства диэлектриков в постоянном и переменном электрич. полях. К Д. и. относятся измерения диэлектрич. проницаемости е в постоянных и переменных полях, диэлектрич. потерь, удельной электропроводности в постоянном электрич. поле, электрич. прочности.

В случае твёрдых диэлектриков Д. и. часто сводятся к измерению ёмкости С плоского электрич. конденсатора, между пластинами к-рого помещён исследуемый
[825-15.jpg]
(d - толщина диэлектрич. образца, S -площадь его боковой грани, k - коэфф. пропорциональности) находят диэлектрич. проницаемость е. В случае жидкостей и газов измеряют ёмкость системы электродов в вакууме (С0) и в данном веществе (Се), а затем определяют е из соотношения: е = Се/Со.

Методы измерения ёмкости и диэлектрич. потерь различны для разных частот электрич. поля. В постоянном поле и при низких частотах (десятые доли гц) ёмкость, как правило, определяют путём измерений зарядного или разрядного токов конденсатора с помощью баллистического гальванометра (рис. 1).

В области частот от десятых гц до 107 гц, помимо С, существенно измерение диэлектрических потерь, мерой к-рых является тангенс угла диэлектрических потерь tgб. С и tgб измеряют с помощью мостовых схем, в частности мостов Шеринга.
[825-16.jpg]

Рис. 1. Измерения диэлектрической проницаемости при помощи баллистического гальванометра G.

В высокочастотной области (от 105 до 108 гц) для измерения ёмкости Се и диэлектрической проницаемости е применяют гл. обр. резонансные методы (рис. 2). Колебательный контур, содержащий образцовый конденсатор (см. Емкости меры), настраивается в резонанс, и определяется соответствующая резонансу величина ёмкости С'. Затем параллельно образцовому конденсатору присоединяют конденсатор с диэлектриком Се, и контур снова настраивается в резонанс. Во втором случае ёмкость С" образцового конденсатора будет меньше. Ёмкость конденсатора, заполненного диэлектриком Се, определяется по формуле: Се = С'-С". (1)

Различные резонансные методы отличаются друг от друга по способу определения tgб. В методе замещения диэлектрик заменяется эквивалентной схемой, состоящей из ёмкости и сопротивления.

[825-17.jpg]

Рис. 2. Измерения ёмкости Се и диэлектрической проницаемости е резонансным методом. Катушка индуктивности L и образцовый конденсатор С образуют замкнутый контур, слабо связанный с генератором переменного тока.

Подбирается такое сопротивление R, к-рое, будучи включено последовательно или параллельно образцовому конденсатору С, ёмкость к-рого берётся равной ёмкости диэлектрика Се, даёт такой же резонансный ток в контуре, как и образец диэлектрика. Метод расстройки контура основан на том, что ширина резонансной кривой контура определяется его добротностью Q, связанной с тангенсом угла потерь диэлектрика соотношением:

[825-18.jpg]

Ёмкость и диэлектрич. потери определяют также методом куметра. В данной области частот можно применять также метод биений.

В области сверхвысоких частот (от 108 до 1011 гц) Д. и. основаны на использовании объёмных резонаторов и радиоволноводов, а также на закономерностях распространения электромагнитных волн в свободном пространстве. В случае газообразных диэлектриков измеряют резонансную частоту w0 и добротность Qo объёмного резонатора (рис. 3), когда в нём создан вакуум, и те же величины wе и Qе, когда он целиком заполнен диэлектриком.

[825-19.jpg]

Рис. 3. Волноводные установки для измерения е и tgS газов.

При этом имеют место соотношения:
[825-20.jpg]

В случае жидких и твёрдых диэлектриков, если они целиком заполняют резонатор, получаются гораздо большие изменения резонансной частоты и добротности. Кроме того, если диэлектрич. потери велики, то добротность резонатора становится весьма малой величиной. Это нарушает справедливость формул (3) и (4). Поэтому применяют частичное заполнение резонатора диэлектриком, чаще всего имеющим форму диска или стержня.

Другой метод Д. и. в области СВЧ состоит в том, что в радиоволноводе устанавливаются бегущая или стоячая электромагнитные волны. Для волновода, заполненного диэлектриком, длина волны Хе равна:
[825-21.jpg]

где Х0 - длина волны в свободном пространстве, Хкр - критич. (предельная) длина волны, зависящая от типа волн и размеров поперечного сечения волновода. Из формулы (5) можно определять Е. При введении диэлектрика в волновод изменяются условия распространения волн и происходит поглощение энергии электромагнитного поля. Это позволяет определить tgб.

Существуют два основных метода измерения е и tg6 с помощью волновода. Первый основан на наблюдении картины стоячих волн в волноводе, нагружённом известным сопротивлением. Второй